Skip to main content

Cornell University research finds life could exist on Saturn’s moon Titan

Despite its seemingly inhospitable climate, life could exist on Saturn’s moon Titan, according to research by scientists at Cornell University.

With an average temperature of -290 F, Titan has plenty of water ice but hardly any water vapor, due to water’s very low vapor pressure. That means any life that might exist would have to be non-water based — that is, unlike any life on Earth.

Still, Earth and Titan have important traits in common. “Titan is the only other place in the solar system, aside from Earth — with the possible exception of Mars — where there are flowing liquids on the surface,” Martin Rahm, research associate at Cornell University and lead author of the study, tells Digital Trends. These liquids fall as rain and affect geology through erosion. Rahm adds: “There are sources of energy — sunlight, cosmic rays — and organic molecules, hence Titan is of keen interest for studying prebiotic processes.”

Titan’s flowing liquids are composed of such things as methane and ethane, rather than water, and its atmosphere is full of hydrogen cyanide (HCN), which the researchers recognize as a molecule believed to be key in prebiotic — existing or occurring before the emergence of life — reactions that eventually led to life on Earth.

Though HCN is plentiful in the atmosphere, it seems to convert to a different compound on the moon’s surface. “Such transformative chemistry is proceeding despite the fact that it is extremely cold on Titan, which is maybe the most profound difference compared to Earth,” Rahm says. “If life could exist there, it would need to function very differently from ‘life as we know it,’ and offer clues to the limitations of life in the universe.”

Along with Jonathan I. Lunine, director of the Cornell Center for Astrophysics and Planetary Science, Rahm and the team ran data collected by the Cassini-Huygens mission through density functional theory — a quantum mechanical modeling method — to predict various compounds that could be made from HCN, and to calculate some of these compounds’ properties. In the end, the calculations suggested that the prebiotic reactions were possible and the resulting chemical structures were capable of functions like light absorption.

“We should stress that this paper does not predict life on the surface of Titan,” Rahm says. “Rather, we provide data in support of an environment that might support prebiotic chemistry, to some extent.

“Finding the limits and possible origins of life is a fundamental challenge, and there are many paths to explore,” Rahm continues. “It has proven very difficult to synthesize well-characterized materials from HCN on Earth, needed to study this chemistry.”

Moving forward, the Cornell team hope to run simulations of these systems evolving over time, while investigating their reactions at various temperatures and expanding their study to examine even more complicated chemistries. In the end, they hope to conduct experiments on Earth that are modeled off of Titan’s chemistry to give an even more detailed description of the moon’s potential for life.

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Long-lost moon could explain how Saturn got its rings
Artistic rendering of the moon Chrysalis disintegrating in Saturn’s intense gravity field. The chunks of icy rock eventually collided and shattered into smaller pieces that became distributed in the thin ring we see today.

Saturn is famed for its beautiful rings, but these rings are something of a puzzle to astronomers. Originally, it was thought that they must have formed around the same time as the planet, over 4 billion years ago. But data from the Cassini spacecraft suggested the rings might be much younger than that, forming less than 100 million years ago. Now, a new study suggests that the rings could have been formed from a long-lost moon, explaining several of Saturn's peculiarities.

Saturn rotates with a tilt of 27 degrees, slightly off the plane at which it orbits the sun, and its rings are tilted too. Recently published research proposes that both of these factors can be explained by a former moon, named Chrysalis, which came close to the planet and was torn apart. Most of the moon was absorbed by the planet, but the rest of it created the stunning rings.

Read more
This spot is where we could find signs of ancient Mars life
Enchanted Lake on Mars.

NASA has shared an image captured on Mars showing a spot where scientists believe they could find the first evidence of ancient microbial life away from Earth.

The photo (below) was captured by NASA’s Perseverance rover and shows what the mission team at the Jet Propulsion Laboratory in Southern California call “Enchanted Lake.”

Read more
Saturn’s moon Titan may be more Earth-like than we thought
These three mosaics of Titan were composed with data from Cassini’s visual and infrared mapping spectrometer taken during the last three Titan flybys, on Oct. 28, 2005 (left), Dec. 26, 2005 (middle), and Jan. 15, 2006 (right). In a new study, researchers have shown how Titan’s distinct dunes, plains, and labyrinth terrains could be formed.

Saturn's moon Titan is one of the top destinations to search for life in our solar system, a tantalizing possibility that will be investigated by NASA's Dragonfly rotorcraft which it launches to visit there in 2027. It is a strange place, with a thick atmosphere, rivers and lakes on its surface composed of liquid methane and ethane, then an icy crust, and a possible ocean of liquid water beneath. Now, new research suggests that this alien world might have more in common with Earth than previously thought, at least in terms of its seasonal cycle.

Researchers from Stanford University and NASA's Jet Propulsion Laboratory have used computer models to analyze how Titan's surface features like its dunes and plains might have formed. In between the rivers which cover its icy surface, there are also hydrocarbon sand dunes. Titan is considered potentially habitable because, in addition to being the only moon in the solar system known to have a substantial atmosphere, it has a seasonal liquid cycle that is comparable to Earth's water cycle, with liquid running over the surface and evaporating up into clouds before raining down again. But instead of this cycle occurring with water, on Titan, it occurs with liquid methane and ethane.

Read more