Skip to main content

Hypervelocity star booted out of our galaxy by supermassive black hole

An artist’s impression of S5-HVS1’s ejection by Sagittarius A*, the supermassive black hole at the center of the Milky Way Galaxy. Sagittarius A* and the captured binary partner to S5-HVS1 are seen far away in the left corner of the picture, while S5-HVS1 is in the foreground, speeding away from them. James Josephides, Swinburne Astronomy Productions

Astronomers have detected a hypervelocity star called S5-HVS1 traveling through our galaxy at a tremendous speed of 2.3 million miles per hour (1,017 km/s), making it the third-fastest star ever recorded.

The star is traveling fast enough that it will leave the Milky Way and shoot off into the massive space between galaxies. “S5-HVS1’s velocity is so high that it will inevitably leave the galaxy and never return,” Dr. Douglas Boubert, an astronomer at the University of Oxford, explained in a statement.

The star is currently around 29,000 light-years away, in the constellation of Grus. But astronomers have tracked its path back to its origin and found that it started its journey from the center of the galaxy. At the heart of our galaxy is a supermassive black hole called Sagittarius A*, which the scientists believe kick-started the star on its journey.

“This is super exciting, as we have long suspected that black holes can eject stars with very high velocities,” Dr. Sergey Koposov, a researcher at Carnegie Mellon University, said in the statement. “However, we never had an unambiguous association of such a fast star with the galactic center.”

A supermassive black hole can eject a star via the Hills mechanism, named after astronomer Jack Hills. This begins with two stars in a binary star system that venture close to a black hole. The tidal forces from the black hole disrupt the binary stars’ orbits and can pull one of the pair into orbit around the hole. The other star is ejected away at high speed. This is what happened to S5-HVS1 4.8 million years ago when it began its journey with a velocity of 4 million mph (1,800 km/s).

“This is the first clear demonstration of the Hills mechanism in action,” Dr. Ting Li, from Carnegie Observatories and Princeton University, said in the same statement. “Seeing this star is really amazing as we know it must have formed in the galactic center, a place very different to our local environment. It is a visitor from a strange land.”

The research is published in the journal Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Stuff of nightmares: Black holes one hundred billion times the mass of the sun
This computer-simulated image shows a supermassive black hole at the core of a galaxy. The black region in the center represents the black hole’s event horizon, where no light can escape the massive object’s gravitational grip. The black hole’s powerful gravity distorts space around it like a funhouse mirror. Light from background stars is stretched and smeared as the stars skim by the black hole.

This computer-simulated image shows a supermassive black hole at the core of a galaxy. The black region in the center represents the black hole’s event horizon, where no light can escape the massive object’s gravitational grip. The black hole’s powerful gravity distorts space around it like a funhouse mirror. Light from background stars is stretched and smeared as the stars skim by the black hole. NASA, ESA, and D. Coe, J. Anderson, and R. van der Marel (STScI)

If the idea of a black hole millions of times the mass of our sun makes you uncomfortable then we have bad news: Researchers have predicted that black holes could grow even larger than previously thought, reaching masses of hundreds of billions of times the mass of the sun. These aren't merely supermassive black holes -- they're stupendously large black holes.

Read more
Uh-oh: Black hole up to 100 billion times the mass of the sun has vanished
This image of Abell 2261 contains X-ray data from Chandra (pink) showing hot gas pervading the cluster as well as optical data from Hubble and the Subaru Telescope that show galaxies in the cluster and in the background.

This image of Abell 2261 contains X-ray data from Chandra (pink) showing hot gas pervading the cluster as well as optical data from Hubble and the Subaru Telescope that show galaxies in the cluster and in the background. Astronomers used these telescopes to search the galaxy in the center of the image for evidence of a black hole, weighing between 3 and 100 billion times the Sun, that is expected to be there. No sign of this black hole was found, deepening a mystery about what is happening in this system. X-ray: NASA/CXC/Univ of Michigan/K. Gültekin ; Optical: NASA/STScI and NAOJ/Subaru; Infrared: NSF/NOAO/KPNO; Radio: NSF/NOAO/VLA

You'd think that it would be hard to lose one of the largest black holes in the universe. However, scientists are currently being puzzled by the apparent absence of the supermassive black hole at the center of the Abell 2261 galaxy cluster -- a monster that is estimated to weigh somewhere between 3 billion and 100 billion times the mass of the sun.

Read more
Six galaxies trapped in cosmic web could explain supermassive black hole growth
This artist’s impression shows the central black hole and the galaxies trapped in its gas web.

Astronomers know that at the heart of most galaxies lies an enormous monster: A supermassive black hole, millions of times the mass of our sun. But they are still learning about how these beasts form and grow to such a large size.

Now, a group using the Very Large Telescope (VLT) has found a group of six galaxies trapped in a cosmic "spider's web" around a supermassive black hole, and investigating this oddity could help explain the formation of these colossal black holes.

Read more