Skip to main content

James Webb telescope packs away its massive sunshield to ready for launch

Both sides of the James Webb Space Telescope's sunshield were lifted vertically in preparation for the folding of the sunshield layers.
Both sides of the James Webb Space Telescope’s sunshield were lifted vertically in preparation for the folding of the sunshield layers. NASA/Chris Gunn

The massive sunshield of NASA’s upcoming James Webb Space Telescope has been folded away for the last time before its launch. The sunshield is the size of a tennis court and is one of the telescope’s more complex structures, along with the origami-style folding mirror.

The sunshield will protect the delicate components of the telescope from the sun’s rays, allowing it to pick up more faint infrared signals. Folding the sunshield is an involved process, as it requires packing the 70-foot by 47-foot sunshield into a small space in the 18-foot rocket.

“There is nothing really analogous to what we are trying to achieve with the folding up of a tennis court-sized sunshield, but it is similar to packing a parachute,” said Jeff Cheezum, a lead sunshield design engineer at Northrop Grumman, in a statement. “Just like a skydiver needs their parachute packed correctly in order to open perfectly and to successfully get back to Earth, Webb needs its sunshield to be perfectly stowed to ensure that it also opens up perfectly and maintains its shape, in order to successfully keep the telescope at its required operating temperature.”

The packing process takes a full month, as it needs to be laid flat but the shield has many curved surfaces. The layers are stacked in an accordion-like style and then secured in place.

“Think of it backwards; we want the deployed sunshield to achieve a specific shape so we get the performance we need. The whole folding process was designed with that in mind. We have to fold cleanly and carefully the same way each time, to ensure the unfolding occurs exactly the way we want it,” said James Cooper, lead sunshield engineer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

To make sure everything is in the right place, the engineers use holes in the sunshield layers which line up exactly and are held in place by 107 pins. These hold everything in place during launch and will be released once the telescope is in space and is ready to unfurl its sunshield for real.

“It’s a very methodical process that we use to make sure everything is aligned correctly,” said Marc Roth, mechanical engineering lead at Northrop Grumman. “Our team has been through multiple training cycles, and we’ve implemented many lessons learned from the previous times we’ve done this process, all culminating in this last sunshield fold.”

The telescope is set to launch later this year.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
Crew-8 launches with small crack in capsule, but SpaceX says it’s safe
SpaceX Crew-8 launches to the space station in March 2024.

SpaceX successfully launched its Crew-8 members to the International Space Station (ISS) on Sunday night.

The Falcon 9 rocket carrying NASA astronauts Michael Barratt, Matthew Dominick, and Jeanette Epps, along with Roscosmos cosmonaut Alexander Grebenkin, blasted away from a Cape Canaveral launchpad in Florida just before 11 p.m. ET.

Read more