Skip to main content

Researchers create lunar life support system by baking moon dust

For future missions to the moon — especially if we want to send a crew there for a significant period of time — we’ll need to find a way to provide for essential needs. Bringing a whole lot of water and oxygen along on a rocket isn’t practical because it’s so heavy, so a different approach aims to make use of the resources available on the moon to create what’s needed.

Now, future lunar explorers may be able to create water and oxygen from moon dust, using research from the European Space Agency (ESA) and others. A team has found a way to produce both water and oxygen by baking dusty lunar soil, which is called regolith.

Artist impression of a Moon Base concept, with solar arrays for energy generation, greenhouses for food production, and habitats shielded with regolith.
Artist impression of a Moon Base concept, with solar arrays for energy generation, greenhouses for food production, and habitats shielded with regolith. ESA - P. Carril

To create essential resources, first, the regolith is vaporized along with hydrogen and methane by heating it to 1,800 degrees Fahrenheit, turning it directly from solid to a gas. The gases are piped to a converter and condenser to extract the water, and then oxygen can be extracted using electrolysis. The process creates by-products of methane and hydrogen, which can then be recycled to start the process again.

“Our experiments show that the rig is scalable and can operate in an almost completely self-sustained closed loop, without the need for human intervention and without getting clogged up,” said Prof Michèle Lavagna, of the Politecnico Milano, who led the experiments.

Currently, the system has only been tested in the lab. The next step is to actually build the technology which could be used in practice by astronauts and to perfect details like the temperatures and the duration of different phases of the process. Eventually, this could form the basis of a human base on the moon.

“The capability of having efficient water and oxygen production facilities on-site is fundamental for human exploration and to run high quality science directly on the Moon,” said Lavagna. “These laboratory experiments have deepened our understanding of each step in the process. It is not the end of the story, but it’s very a good starting point.”

The research was presented at the Europlanet Science Congress 2021.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
U.S. spacecraft lands on the moon for the first time in over 50 years
Intuitive Machines' Odysseus lander heads to the moon.

The U.S. company Intuitive Machines made a historic landing on the moon today. Intuitive Machines' Odysseus lander, launched earlier this month, touched down on the moon's surface at 6:23 p.m. ET, marking the U.S.'s first lunar landing since Apollo 17 in 1972 and the first landing on the moon by a commercial entity.

The Odysseus lander is part of NASA's Commercial Lunar Payload Services (CLPS) program, which provides contracts to companies for lunar services, and it carries a number of NASA scientific instruments. It has landed on the moon's south pole, which is an area of particular scientific interest as it hosts water ice and is the region where NASA plans to land astronauts under its Artemis program.

Read more
SpaceX just launched a moon mission that could enter the history books
Intuitive Machines' Odysseus lander heads to the moon.

SpaceX successfully launched a commercial mission to the moon from the Kennedy Space Center in Florida in the early hours of Thursday morning.

A Falcon 9 rocket carried Intuitive Machines' Odysseus lander to orbit, setting it on course for a rendezvous with the lunar surface next week.

Read more
The moon is shrinking, causing moonquakes at the lunar south pole
Lunar Reconnaissance Orbiter Camera (LROC), Narrow Angle Camera (NAC) mosaic of the Wiechert cluster of lobate scarps (left pointing arrows) near the lunar south pole. A thrust fault scarp cut across an approximately 1-kilometer (0.6-mile) diameter degraded crater (right pointing arrow).

The moon was long thought to be geologically dead, with no processes occurring inside its core.  But increasing evidence over the last decades suggests that the moon isn't static and could, in fact, still be tectonically active. Now, new research from NASA suggests that the shrinking of the moon over time is causing moonquakes and the formation of faults near its south pole.

The research is part of NASA's interest in the lunar south pole, given the agency's intention to send astronauts there. Researchers have modeled lunar activity to look for the source of moonquakes seen during the Apollo missions.

Read more