Skip to main content

See the very first image (and first selfie!) from James Webb

The James Webb Space Telescope is in its final orbit and has its science instruments turned on, but it’ll still be several months before the world’s most powerful space telescope is ready to collect science data. That’s because the telescope not only needs to reach a stable temperature but also because it needs to go through the careful and complex process of aligning its mirrors. But that doesn’t mean there’s nothing to see from this brand new telescope — in fact, NASA has just released both the first image captured by the telescope and even a selfie snapped by one of the telescope’s cameras.

The first image might not look like much, but it’s an indication that Webb’s NIRCam instrument is working to collect light from its target — a particularly bright star called HD 84406. The 18 points of light in the image represent each of the 18 segments of the telescope’s primary mirror, which are gradually being brought into alignment by making nanometer adjustments. “The entire Webb team is ecstatic at how well the first steps of taking images and aligning the telescope are proceeding,” said Marcia Rieke, principal investigator for the NIRCam instrument in a statement. “We were so happy to see that light makes its way into NIRCam.”

An image mosaic created by pointing the telescope at a bright, isolated star in the constellation Ursa Major known as HD 84406.
This image mosaic was created by pointing the telescope at a bright, isolated star in the constellation Ursa Major known as HD 84406. This star was chosen specifically because it is easily identifiable and not crowded by other stars of similar brightness, which helps to reduce background confusion. NASA

The image is a mosaic, stitched together from a huge 54 gigabytes of raw data captured over a 25-hour period. This is just a portion of the full mosaic, showing the same star imaged 18 times. This is invaluable data for the team as they work on aligning the mirrors to bring the telescope into focus.

In addition, the NIRCam instrument used a special lens to snap an image of the telescope itself, showing the distinctive hexagon-shaped mirror segments in the telescope’s first selfie. You can see one of the segments glowing brightly as that segment was pointed toward a star, while the other segments are currently at different alignments.

Selfie of a James Webb telescope mirror created using a specialized pupil imaging lens inside of the NIRCam instrument.
This “selfie” was created using a specialized pupil imaging lens inside of the NIRCam instrument that was designed to take images of the primary mirror segments instead of images of space. This configuration is not used during scientific operations and is used strictly for engineering and alignment purposes. In this case, the bright segment was pointed at a bright star, while the others aren’t currently in the same alignment. This image gave an early indication of the primary mirror alignment to the instrument. NASA

Over the next few months, the images captured by Webb will become sharper and show more details as the mirrors are aligned and the telescope’s other three instruments reach their stable temperatures and start capturing data as well. For now, the images show that the telescope is healthy and operating for the first time. “Launching Webb to space was, of course, an exciting event, but for scientists and optical engineers, this is a pinnacle moment, when light from a star is successfully making its way through the system down onto a detector,” said Michael McElwain, Webb observatory project scientist at NASA’s Goddard Space Flight Center.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more
See what the solar eclipse looked like from space
The Moon’s shadow, or umbra, is pictured from the space station as it orbited into the path of the solar eclipse on April 8, 2024.

This week's total solar eclipse wowed people across Northern America, but it wasn't only here on Earth that this special cosmic phenomenon was enjoyed. The astronauts on board the International Space Station (ISS) also caught a stunning glimpse of the eclipse, and NASA has shared some images showing what a space-eye view of an eclipse looks like.

The moon’s shadow, or umbra, on earth was visible from the International Space Station as it orbited into the path of the solar eclipse over southeastern Canada on April 8, 2024. NASA

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more