Skip to main content

3 Unreal Engine 5 features PC gamers need to know about

Epic just opened up Unreal Engine 5 to all developers, after releasing the game engine into early access in 2021. It’s being used to develop a new Tomb Raider game, and it promises to provide a true generational leap in how games are developed for PC and consoles.

Short of Fortnite, we don’t have any Unreal Engine 5 games at the moment. But there’s still a lot to get excited about. Here are the three most important Unreal Engine 5 features that will make PC games look and play better than ever.

Temporal Super Resolution

Akito attacks enemies with magic in Ghostwire: Tokyo.
Image used with permission by copyright holder

Temporal Super Resolution (TSR) is the defining feature of Unreal Engine 5, even if it takes a back seat to the fancy new lighting and shadow engines. TSR is an internal super sampling tool that allows the game to achieve near-native image quality while rendering at a lower resolution, which improves performance.

Get your weekly teardown of the tech behind PC gaming
Check your inbox!

It was key to getting Epic’s The Matrix Awakening demo running, and we’ve already seen it in action in Ghostwire TokyoAs features like Nvidia Deep Learning Super Sampling (DLSS) and AMD FidelityFX Super Resolution (FSR) have shown, supersampling is the linchpin for the next generation of graphics, offering the visual flare of features like ray tracing without the performance penalty.

TSR is special because it’s not caught up in the shenanigans of upscaling features from AMD, Nvidia, and Intel. It’s a general solution built into Unreal Engine 5, and it works across graphics cards and consoles. Developers can now easily integrate high-quality, temporal upscaling to their games without concern of vendor lockout.

Based on our early look in Ghostwire Tokyotoo, it offers similar image quality to native resolution while doubling performance, in some cases. For PC gamers, that hopefully means being able to jump up a resolution, or push more demanding features without the performance cost.

Lumen, Nanite, and virtual shadow maps

Lighting in Unreal Engine 5.
Image used with permission by copyright holder

TSR is so important because of the improved rendering features of Unreal Engine 5. The three major new rendering features are Lumen, Nanite, and Virtual Shadow Maps (VSM), each of which works together to provide more accurate lighting and world detail at a lower performance cost.

VSM and Nanite have a similar idea behind them. Both virtualize highly-detailed rendering techniques and only feed the player the detail that matters. In the case of VSM, a massive shadow map is broken up into chunks, and only the chunks that matter to what the player can see are rendered. Similarly, Nanite is a geometry system that “intelligently does work on only the detail that can be perceived and no more.”

Bringing these two features to life is Lumen, which is a new dynamic global illumination system in Unreal Engine 5. It looks to strike a balance between cheaper screen space global illumination and the more demanding ray-traced global illumination. Similar to Nanite and VSM, it can break up fine details — such as diffused indirect lighting — and render them at a lower resolution. Critically, Lumen also supports hardware-accelerated ray tracing.

Together, the three features should bring a sense of depth we’ve never seen before in PC games. We only have The Matrix Awakens demo and Epic’s 2020 UE5 demo to go off of now, but both bring more realistic lighting than we’ve ever seen before. With features like TSR, as well as the performance-saving measures in Unreal Engine 5’s new rendering features, we may see real games that look as good.

Mass AI

Mass AI system in Unreal Engine 5.
Image used with permission by copyright holder

We’ve focused mainly on graphics, but Unreal Engine 5 also includes some features that will improve gameplay. The new “Mass AI” system is what we’re looking at here, which provides a set of tools for developers to place dynamic characters in an open-world setting that each has its own simulations running.

The Matrix Awakens showed this system in action. Epic technical director Jeff Farris said in an interview that this A.I. system was used to simulate 35,000 crowd members, 18,000 vehicles, and 40,000 parked cars in the demo. Even more impressive, the system can simulate all of that regardless of where the player is.

Traditional open-world games only pull A.I. instructions based on where the player is, so an NPC on the other side of the map is just sitting and waiting for the player to show up. Epic is able to achieve large-scale A.I. simulations thanks to features like Smart Objects, which include instructions for interaction baked into the object, and Mass Avoidance, which is an avoidance system for large sets of NPCs.

That should translate into more dynamic open worlds. If you leave a group of NPCs and come back a few minutes later, you won’t see the same loop of characters performing the same tasks. The next entry in The Witcher franchise is using Unreal Engine 5, which speaks to the power of this A.I. system.

Jacob Roach
Lead Reporter, PC Hardware
Jacob Roach is the lead reporter for PC hardware at Digital Trends. In addition to covering the latest PC components, from…
As a pro PC builder, here are 5 building tips no one tells you
The Hyte Y40 PC case sitting on a table.

I've built hundreds of PCs. I'm not confident enough to say thousands yet, but I'm sure I'll hit that mark before too long. Every time I go to review a new graphics card or processor, I go through the process of tearing down and rebuilding PCs half a dozen times or more. And I've gained a lot of insight into the process during that time.

I don't sell the PCs I build -- I simply use them for evaluation -- but it's a process I engage in so often that it feels second nature. Here are five tips for building a PC that you won't find in a guide on how to build a PC.
Screws come with your case

Read more
Nvidia’s DLSS 3.5 update is what ray tracing always wanted to be
Reflections on the street in Cyberpunk 2077.

Nvidia's Deep Learning Super Sampling (DLSS) is getting a huge boost. The new DLSS 3.5 update adds a feature called Ray Reconstruction to the suite, and it promises to make ray tracing more realistic than ever before. I've tested it, and Nvidia was telling the truth.

Ray Reconstruction brings ray tracing to new heights of realism, and it's a fantastic addition to the DLSS suite. Even better, it works across all RTX graphics cards, unlike Nvidia's DLSS Frame Generation. However, there could be a problem with support as we see more games release with the feature. Ray Reconstruction may work with any RTX GPU, but it could be a feature that's only realistic for intensive ray tracing that requires one of the latest and greatest GPUs.
What ray tracing should be

Read more
The success of AMD’s FSR 3 hinges on this one feature
AMD's RX 7900 XTX installed in a PC.

AMD finally shared more details on its FidelityFX Super Resolution 3 (FSR 3) this week, and it's exactly what everyone was asking for. It supports frame generation, and it works across GPUs from AMD and Nvidia. The company is even releasing a driver-based version of its Fluid Motion Frames tech, potentially enabling game support for thousands of titles. It's all good stuff.

But a big question remains: How is AMD going to deal with latency?

Read more