Skip to main content

James Webb’s mirrors are almost, but not quite, cooled

NASA’s James Webb Space Telescope is nearing completion of the seventh and final step in its alignment process. With its MIRI instrument now cooled to its operating temperature, the telescope is approaching its final, chilly overall temperature as it mirrors cool as well.

The James Webb Space Telescope.
Northrup Grumman/ESA/Hubble

“Now that the instruments are at their operating temperatures, the telescope mirrors will also continue cooling down to their final temperatures, but they are not quite there yet,” writes Jonathan Gardner, Webb deputy senior project scientist at NASA’s Goddard Space Flight Center. “The primary mirror segments and the secondary mirror are made of beryllium (coated with gold). At cryogenic temperatures, beryllium has a long thermal time constant, which means that it takes a long time to cool or to heat up. The primary mirror segments are still cooling, very slowly.”

One of the problems that designers of space missions need to address is that most materials change shape as they cool. If the mirror segments were made of glass, for example, they would warp as their temperatures changed, meaning the careful work of aligning the mirror would be lost. That’s why the mirror is made of beryllium, which has a property called low thermal expansion, meaning it changes shape very little when heated. That means that even as the primary mirror segments cool, they don’t affect the process of aligning the telescope.

As well as the 18 segments of the primary mirror, which currently vary in temperature between 34.4 kelvins to 54.5 kelvins, there is also the secondary mirror to consider. This small, round mirror sits on the end of a long boom arm and is currently at a cooler 29.4 kelvins due to being located further away from the heat sources.

The mirror segments are now cool enough, at below 55 kelvins, that they won’t prevent MIRI from taking science readings. However, the team hopes that they will cool further, by 0.5 to 2 kelvins, which would allow MIRI to take even more accurate readings. The exact temperature which they reach is related to the way that the telescope and its huge sunshield are pointing at the sun. The angle at which the telescope is relative to the sun depends on the target that it is looking at, and this angle changes the telescope’s temperature over time.

When Webb begins science operations this summer, it is expected that its average temperature will drop a bit more as the direction in which it points is changed.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more
James Webb snaps a stunning stellar nursery in a nearby satellite galaxy
This image from the NASA/ESA/CSA James Webb Space Telescope features an H II region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. This nebula, known as N79, is a region of interstellar atomic hydrogen that is ionised, captured here by Webb’s Mid-InfraRed Instrument (MIRI).

A stunning new image from the James Webb Space Telescope shows a star-forming region in the nearby galaxy of the Large Magellanic Cloud. Our Milky Way galaxy has a number of satellite galaxies, which are smaller galaxies gravitationally bound to our own, the largest of which is the Large Magellanic Cloud or LMC.

The image was taken using Webb's Mid-Infrared Instrument or MIRI, which looks at slightly longer wavelengths than its other three instruments which operate in the near-infrared. That means MIRI is well suited to study things like the warm dust and gas found in this region in a nebula called N79.

Read more