Skip to main content

How engineers will calibrate James Webb’s 4 instruments

The James Webb Space Telescope is inching closer to beginning its science mission. With the mirrors and instruments all fully aligned, Webb is undertaking the next big step in getting ready for science operations this summer: Commissioning the instruments. Webb has four instruments, the Near-Infrared Camera (NIRCam), Near-Infrared Spectrometer (NIRSpec), Near-Infrared Imager and Slitless Spectrometer (NIRISS) / Fine Guidance Sensor (FGS), and the Mid-Infrared Instrument (MIRI). The engineers need to check that every part of each instrument is working exactly as it should so that the telescope can be as accurate as possible.

All four instruments have already been powered up and cooled to their operating temperatures. To check their components, the commissioning team operates the instruments’ mechanisms like the wheels which control the filters and gratings, and NIRSpec’s microshutters which are like tiny windows that open and close to allow it to image hundreds of targets at once.

Then it’s on to the instrument calibrations, in which each instrument collects data from a known target and is then tweaked to ensure it is accurate, as Scott Friedman, lead commissioning scientist for Webb, explained in a NASA blog post:

“The astrometric calibration of each instrument maps the pixels on the detectors to the precise locations on the sky, to correct the small but unavoidable optical distortions that are present in every optical system. We do this by observing the Webb astrometric field, a small patch of sky in a nearby galaxy, the Large Magellanic Cloud.”

The Large Magellanic Cloud is a well-known astronomical object, which has previously been observed with great accuracy by the Hubble Space Telescope. That means the engineers have a very good comparison for what they should be seeing with Webb. This allows them to calibrate the tiny optical distortions in the instruments and allow for them.

“Calibrating this distortion is required to precisely place the science targets on the instruments’ field of view,” Friedman explained. “For example, to get the spectra of a hundred galaxies simultaneously using the NIRSpec microshutter assembly, the telescope must be pointed so that each galaxy is in the proper shutter, and there are a quarter of a million shutters!”

The team will also test out the sharpness of images gathered from each instrument, and test out whether the instruments can correctly point to a given target. The last step is to check whether instruments can track moving targets, which is not needed for most observations because the targets are so far away, but it is useful for looking at targets like asteroids and comets in our solar system.

“We are now in the last two months of Webb’s commissioning before it is fully ready for its scientific mission,” Friedman writes. “We still have important properties and capabilities of the instruments to test, measure, and demonstrate. When these are complete, we will be ready to begin the great science programs that astronomers and the public alike have been eagerly awaiting. We are almost there.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Watch SpaceX fire Starship’s Raptor engines ahead of 4th test flight
The Starship spacecraft during an engine test.

SpaceX performed a full-duration static fire of all six Raptor engines on its Starship spacecraft on Monday, and shared a video of the dramatic test on social media.

https://twitter.com/SpaceX/status/1772372482214801754

Read more
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more