Skip to main content

All of the modes James Webb instruments will use to study the universe

With the James Webb Space Telescope now fully aligned and capturing crisp images, the team has moved on to getting its instruments calibrated. While this process is ongoing, NASA has shared an update about the 17 different modes that will be possible using Webb’s four instruments, with examples of what kind of scientific research will be possible with each.

As the engineers work on calibrating Webb’s instruments, they will check through each of the 17 modes and make sure it is ready for science operations to begin this summer.

Near-Infrared Camera (NIRCam) modes:

  1. Imaging. This instrument takes pictures in the near-infrared wavelength, and will be Webb’s main camera function. It will be used to take images of both individual galaxies and deep fields, such as the Hubble Ultra-Deep Field.
  2. Wide field slitless spectroscopy. This mode, in which light is split into different wavelengths, was originally intended just for aligning the telescope, but scientists realized they could also use it for science-related tasks such as observing distant quasars.
  3. Coronagraphy. Some sources of light, like stars, are very bright and glare from them covers up fainter light sources nearby. This mode places a disk to block out a bright light source so dimmer objects can be seen, such as exoplanets orbiting around bright stars.
  4. Time series observations – imaging. This mode is used to observe objects that change quickly, like magnetars.
  5. Time series observations – grism. This mode can look at light coming through the atmosphere of exoplanets to learn about what the atmosphere is made up of.

Near-Infrared Spectrograph (NIRSpec) modes:

  1. Multi-object spectroscopy. This instrument is outfitted with a special microshutter array, in which thousands of tiny windows, each around the width of a human hair, can be opened or closed individually. This allows the instrument to observe up to 100 objects at the same time, meaning it can collect data far faster than previous instruments. It will be used to capture deep field images like one of a region called the Extended Groth Strip.
  2. Fixed slit spectroscopy. Instead of looking at many targets at once, this mode uses fixed slits for very sensitive readings for individual targets, such as looking at light from sources of gravitational waves called kilonovas.
  3. Integral field unit spectroscopy. This mode looks at light coming from a small area instead of a single point, which allows researchers to get an overall look at objects such as distant galaxies that appear larger due to an effect called gravitational lensing.
  4. Bright object time series. This mode allows researchers to look at objects that change quickly over time, such as an exoplanet in a full orbit of its star.

Near-Infrared Imager and Slitless Spectrograph (NIRISS) modes:

  1. Single object slitless spectroscopy. This mode blurs out light from very bright objects so researchers can look at smaller objects, like rocky Earth-like plants in the TRAPPIST system.
  2. Wide field slitless spectroscopy. This type of spectroscopy is used to look at the most distant galaxies, like those we don’t yet know about.
  3. Aperture masking interferometry. This mode blocks out light from some of the 18 segments of Webb’s primary mirror to allow high-contrast imaging, like looking at a binary star system where stellar winds from each star are colliding.
  4. Imaging. This mode is a backup for the NIRCam imaging that can be used when the other instruments are already in use. It will be used to image targets like a gravitationally lensing galaxy cluster.

Mid-Infrared Instrument (MIRI) modes:

  1. Imaging. MIRI works in the mid-infrared wavelength, which is useful for looking at features like dust and cold gas, and will be used on such targets as the nearby galaxy Messier 33.
  2. Low-resolution spectroscopy. This mode is for looking at faint sources, like an object’s surface to see its composition, and will be used to study objects like a tiny moon orbiting Pluto called Charon.
  3. Medium-resolution spectroscopy. This mode is better for brighter sources, and will be used to look at targets like the disks of matter from which planets form.
  4. Coronagraphic imaging. Like NIRCam, MIRI also has cornographic modes that can block out bright sources and which will be used to hunt for exoplanets around the nearby star Alpha Centauri A.

To see the progress being made on getting all 17 of these modes ready, you can follow along using the Where is Webb tracker, which shows deployment status as each mode is ready for operations.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more
James Webb snaps a stunning stellar nursery in a nearby satellite galaxy
This image from the NASA/ESA/CSA James Webb Space Telescope features an H II region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. This nebula, known as N79, is a region of interstellar atomic hydrogen that is ionised, captured here by Webb’s Mid-InfraRed Instrument (MIRI).

A stunning new image from the James Webb Space Telescope shows a star-forming region in the nearby galaxy of the Large Magellanic Cloud. Our Milky Way galaxy has a number of satellite galaxies, which are smaller galaxies gravitationally bound to our own, the largest of which is the Large Magellanic Cloud or LMC.

The image was taken using Webb's Mid-Infrared Instrument or MIRI, which looks at slightly longer wavelengths than its other three instruments which operate in the near-infrared. That means MIRI is well suited to study things like the warm dust and gas found in this region in a nebula called N79.

Read more