Skip to main content

Linking 64 antennae together to see the radio universe on a grand scale

It used to be the case that if you wanted a powerful telescope, you had to build it big — really big. But now, it’s possible to create a very powerful telescope by using multiple smaller antennae spread over a large area, which is how projects like the Event Horizon Telescope that took the famous first image of a black hole work.

An upcoming project called the Square Kilometer Array observatory (SKAO) is set to become the world’s largest radio telescope, with antennae placed from South Africa to Australia. It is eventually intended to have thousands of antennae, with a total receiving area of over a square kilometer, allowing it to look so far away it can see all the way back to the early stages of the universe.

One of the MeerKAT antennae.
One of the MeerKAT antennae. SARAO (South African Radio Astronomy Observatory)

SKA is currently under construction, but before it can be used for science, the design principles need to be worked out. That’s the job of MeerKAT, an array of 64 antennae in South Africa that will eventually become part of the SKAO system. Typically, the telescopes would all work together as part of an array. But recently, astronomers at the headquarters of the SKAO at Jodrell Bank in the U.K. used data from these 64 dishes in a different way, by using them individually to look at different patches of the sky,  in order to build up a large-scale picture.

The researchers used the 64 antennae to create radio maps of the sky, which mapped onto galaxy positions seen by optical telescopes. That shows that the array is capable of bringing together data from many individual antennae to look at the universe on a large scale.

“This detection was made with just a small amount of pilot survey data,” said lead author Steven Cunnington of the University of Manchester in a statement. “It’s encouraging to imagine what will be achieved as MeerKAT continues to make increasingly larger observations.

“For many years I have worked towards forecasting the future capability of the SKAO. To now reach a stage where we are developing the tools we will need and demonstrating their success with real data is incredibly exciting. This only marks the beginning of what we hope will be a continuous showcase of results which advances our understanding of the Universe.”

The research is available on the preprint archive arXiv.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb discovers the most distant galaxy ever observed
JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang.

JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang. Credit: NASA, ESA, CSA, STScI, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), P. Cargile (CfA). NASA

Researchers using the James Webb Space Telescope have discovered the most distant known galaxy to date, one that is so far away that it existed just a few hundred million years after the Big Bang. Since Webb began its science operations in 2022, astronomers have used it to look for very distant, very ancient galaxies and have been surprised by what they found. Not only have they found many of these distant galaxies, but the galaxies are also brighter and more massive than they expected -- suggesting that galaxies evolved into large sizes faster than anyone imagined.

Read more
Two tiny NASA satellites are launching to study Earth’s poles
The first of two CubeSats for the PREFIRE mission sits on a launch pad in Māhia, New Zealand, shortly before launching on May 25, 2024 at 7:41 p.m. NZST (3:41 a.m. EDT).

A CubeSat satellite sits on a launch pad in Māhia, New Zealand, shortly before launching on May 25, 2024. Rocket Lab

This weekend will be a busy time for rocket launches. Not only will NASA be attempting the first crewed launch of the Boeing Starliner, which is currently scheduled for Saturday, June 1, following a series of delays, but there will also be the second of a two-part launch of a new mission called PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment).

Read more
Watch Starliner heading back to the launchpad at Kennedy
Boeing Space's Starliner spacecraft heading back to the launchpad.

Boeing Space's Starliner spacecraft heading back to the launchpad atop an Atlas V rocket. NASA/Boeing Space

In a big step toward its first crewed flight, Boeing Space’s Starliner spacecraft and United Launch Alliance’s Atlas V rocket were transported to the launchpad at the Kennedy Space Center in Florida on Thursday.

Read more