Skip to main content

Check out Webb telescope’s most amazing image yet

The gloriously powerful James Webb Space Telescope may well take us forward in our ongoing quest to learn more about the universe and our origins, but sometimes it’s worth simply marveling at the stunning imagery that the observatory is sending home as part of its groundbreaking mission.

Take this extraordinary view shared by NASA on Tuesday, August 2, captured by one of Webb’s powerful infrared cameras. It shows the Cartwheel Galaxy in all its breathtaking beauty, the patterns, colors, and shape a sight to behold.

The Cartwheel Galaxy captured by the James Webb Space Telescope.
A large pink, speckled galaxy resembling a wheel with a small, inner oval, with dusty blue in between on the right, with two smaller spiral galaxies about the same size to the left against a black background. NASA, ESA, CSA, STScI

Located some 500 million light-years away in the Sculptor constellation, NASA describes the Cartwheel Galaxy as a “rare sight.” It dominates the image, with two companion galaxies also visible against a backdrop of many others.

“Its appearance, much like that of the wheel of a wagon, is the result of an intense event — a high-speed collision between a large spiral galaxy and a smaller galaxy not visible in this image,” NASA says. “Collisions of galactic proportions cause a cascade of different, smaller events between the galaxies involved [and] the Cartwheel is no exception.”

In a post on its website, the space agency points out the Cartwheel Galaxy’s two rings — a bright inner ring and an outer, colorful ring. “These two rings expand outwards from the center of the collision, like ripples in a pond after a stone is tossed into it. Because of these distinctive features, astronomers call this a ‘ring galaxy,’ a structure less common than spiral galaxies like our Milky Way.”

The dazzling core holds a huge amount of hot dust, and the brightest spots indicate enormous young star clusters. The outer ring, meanwhile, has expanded for around 440 million years, and as it does so it plows into surrounding gas, leading to the formation of yet more stars.

NASA notes that existing space-based observatories such as the Hubble Space Telescope have already had the Cartwheel within its sights, but Webb, with its ability to detect infrared light, has been able to offer more detailed views of the distant galaxy.

For example, Webb’s primary imager, the Near-Infrared Camera (NIRCam), has been able to highlight even more stars than previously observed in visible light. “This is because young stars, many of which are forming in the outer ring, are less obscured by the presence of dust when observed in infrared light,” the agency explains.

Meanwhile, data from Webb’s Mid-Infrared Instrument (MIRI) appear in red in the image. The spiraling spokes that form the Cartwheel Galaxy’s skeleton are areas with an abundance of hydrocarbons and other chemical compounds, and also silicate dust. “These spokes are evident in previous Hubble observations released in 2018, but they become much more prominent in this Webb image,” NASA says.

Webb’s observations confirm that while the Cartwheel was probably similar in appearance to the Milky Way before its collision, it is now in what NASA describes as “a very transitory stage.”

Following its launch in December 2021, the James Webb Space Telescope is now in an orbit about a million miles from Earth. Last month NASA shared the first set of high-resolution, color images from what is the most powerful space observatory ever built. And just like this one of the Cartwheel Galaxy, they didn’t disappoint.

Editors' Recommendations

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more
James Webb snaps a stunning stellar nursery in a nearby satellite galaxy
This image from the NASA/ESA/CSA James Webb Space Telescope features an H II region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. This nebula, known as N79, is a region of interstellar atomic hydrogen that is ionised, captured here by Webb’s Mid-InfraRed Instrument (MIRI).

A stunning new image from the James Webb Space Telescope shows a star-forming region in the nearby galaxy of the Large Magellanic Cloud. Our Milky Way galaxy has a number of satellite galaxies, which are smaller galaxies gravitationally bound to our own, the largest of which is the Large Magellanic Cloud or LMC.

The image was taken using Webb's Mid-Infrared Instrument or MIRI, which looks at slightly longer wavelengths than its other three instruments which operate in the near-infrared. That means MIRI is well suited to study things like the warm dust and gas found in this region in a nebula called N79.

Read more