Skip to main content

Thousands of stars press close together in stunning Hubble image

If this week’s release of the biggest James Webb image so far hasn’t fully satisfied your urge for beautiful pictures of space, the old faithful Hubble Space Telescope is here for you. Each week, Hubble researchers share an image collected by the 30-year-old telescope, and this week shows a dazzling globular cluster by the name of NCG 6540.

A globular cluster is a group of tens of thousands or even millions of stars, which are packed closely together and held in a cluster by their shared gravity. This particular globular cluster was imaged using two of Hubble’s instruments, the Wide Field Camera 3 and the Advanced Camera for Surveys.

This scintillating image showcases the globular cluster NGC 6540 in the constellation Sagittarius, which was captured by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. These two instruments have slightly different fields of view — which determines how large an area of sky each instrument captures. This composite image shows the star-studded area of sky that was captured in both instruments’ field of view.
This scintillating image showcases the globular cluster NGC 6540 in the constellation Sagittarius, which was captured by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. These two instruments have slightly different fields of view — which determines how large an area of the sky each instrument captures. This composite image shows the star-studded area of the sky that was captured in both instruments’ fields of view. ESA/Hubble & NASA, R. Cohen

This cluster is located around 17,000 light years away and is in the constellation of Sagittarius. It was first observed in 1784 by William Herschel, who originally classified it as a “faint nebula,” but its true nature as a globular cluster was noted when it was observed by Celtech astronomer Stanislav George Djorgovski in 1986.

Studying these huge groups of stars can help astronomers learn more about the evolution of stars and galaxies, and this image was collected as part of a study into globular clusters within the Milky Way. As Hubble scientists explain, “Hubble peered into the heart of NGC 6540 to help astronomers measure the ages, shapes, and structures of globular clusters towards the center of the Milky Way. The gas and dust shrouding the center of our galaxy block some of the light from these clusters, as well as subtly changing the colors of their stars … Globular clusters contain insights into the earliest history of the Milky Way, and so studying them can help astronomers understand how our galaxy has evolved.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble spots a bright galaxy peering out from behind a dark nebula
The subject of this image taken with the NASA/ESA Hubble Space Telescope is the spiral galaxy IC 4633, located 100 million light-years away from us in the constellation Apus. IC 4633 is a galaxy rich in star-forming activity and also hosts an active galactic nucleus at its core. From our point of view, the galaxy is tilted mostly towards us, giving astronomers a fairly good view of its billions of stars.

A new image from the Hubble Space Telescope shows a galaxy partly hidden by a huge cloud of dust known as a dark nebula. The galaxy IC 4633 still shines brightly and beautifully in the main part of the image, but to the bottom right, you can see dark smudges of dust that are blocking the light from this part of the galaxy.

Taken using Hubble's Advanced Camera for Surveys (ACS) instrument, the image also incorporates data from the DECam instrument on the Víctor M. Blanco 4-meter Telescope, which is located in Chile. By bringing together data from the space-based Hubble and the ground-based DECam, astronomers can get a better look at this galaxy, located 100 million light-years away, and the dark dust partially obscuring it.

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more