Skip to main content

A failed Webb telescope calibration leads to the discovery of this tiny asteroid

With any new technology, there are bound to be failures — and that’s true of cutting-edge astronomy instruments like the James Webb Space Telescope as well. But failures can have a silver lining, as was demonstrated recently when an unsuccessful attempt to calibrate a Webb instrument to a well-known asteroid turned up a delightful surprise: the discovery of a new, different asteroid that is just a few hundred feet across.

An asteroid roughly the size of Rome’s Colosseum — between 300 to 650 feet (100 to 200 meters) in length — has been detected by an international team of European astronomers using NASA's James Webb Space Telescope. They used data from the calibration of the MIRI instrument, in which the team serendipitously detected an interloping asteroid. The object is likely the smallest observed to date by Webb and may be an example of an object measuring under 1 kilometer in length within the main asteroid belt, located between Mars and Jupiter. More observations are needed to better characterize this object’s nature and properties.
An asteroid roughly the size of Rome’s Colosseum — between 300 to 650 feet in length — has been detected by a team of European astronomers using NASA’s James Webb Space Telescope. They used data from the calibration of the MIRI instrument to serendipitously detect an interloping asteroid. The object is likely the smallest observed by Webb, and may be an example of an object measuring under 1 kilometer in length within the main asteroid belt, located between Mars and Jupiter.  ARTWORK: NASA, ESA, CSA, N. Bartmann (ESA/Webb), Martin Kornmesser (ESA), Serge Brunier (ESO), Nick Risinger (Photopic Sky Survey)

Researchers were looking through the data collected during the calibration of Webb’s Mid-Infrared Instrument (MIRI) when it was pointed toward known asteroid 1998 BC1 — a procedure that had failed due to technical issues. They hoped that they could use this data to test out some new techniques, but when they went digging, they spotted something unexpected. There was a tiny asteroid around 100 to 200 meters (300 to 650 feet) long that happened to be passing through the instrument’s field of view at the same time.

“Our results show that even ‘failed’ Webb observations can be scientifically useful, if you have the right mindset and a little bit of luck,” said lead author of the research, Thomas Müller, in a statement. “Our detection lies in the main asteroid belt, but Webb’s incredible sensitivity made it possible to see this roughly 100-meter object at a distance of more than 100 million kilometers.”

The smaller targets like asteroids are, the harder they are to detect as they reflect so little light. So it’s exciting that Webb was able to detect this new object, thought to be the smallest asteroid Webb has observed so far.

The discovery needs to be confirmed before the small asteroid can be named, but it could help researchers understand more about the formation of the solar system. Asteroids are remnants from the formation of the planets, and studying them can offer a glimpse billions of years into the past.

“This is a fantastic result which highlights the capabilities of MIRI to serendipitously detect a previously undetectable size of asteroid in the main belt,” said Webb support scientist Bryan Holler. “Repeats of these observations are in the process of being scheduled, and we are fully expecting new asteroid interlopers in those images.”

The research is published in the journal Astronomy and Astrophysics.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more
See planets being born in new images from the Very Large Telescope
This composite image shows the MWC 758 planet-forming disc, located about 500 light-years away in the Taurus region, as seen with two different facilities. The yellow colour represents infrared observations obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope (VLT). The blue regions on the other hand correspond to observations performed with the Atacama Large Millimeter/submillimeter Array (ALMA).

Astronomers have used the Very Large Telescope to peer into the disks of matter from which exoplanets form, looking at more than 80 young stars to see which may have planets forming around them. This is the largest study to date on these planet-forming disks, which are often found within the same huge clouds of dust and gas that stars form within.

A total of 86 young stars were studied in three regions known to host star formation: Taurus and Chamaeleon I, each located around 600 light-years away, and Orion, a famous stellar nursery located around 1,600 light-years away. The researchers took images of the disks around the stars, looking at their structures for clues about how different types of planets can form.

Read more
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more