Skip to main content

James Webb spots huge plumes of water from Saturn’s moon Enceladus

One of the prime places that scientists are interested in looking for life in our solar system is Saturn’s icy moon Enceladus. The moon has an ocean of liquid water beneath a thick, icy crust that could potentially support life. Interest in this subsurface ocean was heightened when the Cassini mission was studying Enceladus in the 2000s and flew through plumes of water spraying from the surface,

Now, the James Webb Space Telescope has been used to observe these plumes all the way from Earth, helping scientists to learn about the water system on this moon. The plumes come from Enceladus’s south pole, and Webb was able to spot them even though the entire moon is just over 300 miles across. Despite that small size, the plume Webb observed spanned more than 6,000 miles.

Saturn’s geologically active moon, Enceladus. NASA/JPL

“When I was looking at the data, at first, I was thinking I had to be wrong. It was just so shocking to detect a water plume more than 20 times the size of the moon,” said lead author of the research, Geronimo Villanueva of NASA’s Goddard Space Flight Center, in a statement. “The water plume extends far beyond its release region at the southern pole.”

As well as being long, the plume was also throwing up water at a fast rate, with vapor gushing away from the surface at a rate of  nearly 80 gallons per second — which, NASA points out, could fill an Olympic-sized swimming pool in a couple of hours.

This amount of water is affecting the environment around Saturn, as the moon is leaving a trail of water as it orbits. “The orbit of Enceladus around Saturn is relatively quick, just 33 hours. As it whips around Saturn, the moon and its jets are basically spitting off water, leaving a halo, almost like a donut, in its wake,” said Villanueva. “In the Webb observations, not only was the plume huge, but there was just water absolutely everywhere.”

NASA’s James Webb Space Telescope’s exquisite sensitivity and highly specialised instruments are revealing details into how one of Saturn’s moon’s feeds the water supply for the entire system of the ringed planet. Enceladus, a prime candidate in the search for life elsewhere in our Solar System, is a small moon about four percent the size of Earth. New images from Webb’s NIRCam (Near-Infrared Camera) have revealed a water vapour plume jetting from the south pole of Enceladus, extending out 40 times the size of the moon itself. The Integral Field Unit (IFU) aboard the NIRSpec (Near-Infrared Spectrograph) instrument also provided insights into how the water from Enceladus feeds the rest of its surrounding environment.
NASA’s James Webb Space Telescope’s exquisite sensitivity and highly specialized instruments are revealing details into how one of Saturn’s moon’s feeds the water supply for the entire system of the ringed planet. NASA, ESA, CSA, STScI, L. Hustak (STScI), G. Villanueva (NASA’s Goddard Space Flight Center)

The researchers used Webb’s NIRCam (Near-Infrared Camera) instrument to take pictures of the plume, and also its NIRSpec (Near-Infrared Spectrograph) instrument to identify the water coming from and surrounding the moon.

“Right now, Webb provides a unique way to directly measure how water evolves and changes over time across Enceladus’ immense plume, and as we see here, we will even make new discoveries and learn more about the composition of the underlying ocean,” said co-author Stefanie Milam of NASA Goddard. “Because of Webb’s wavelength coverage and sensitivity, and what we’ve learned from previous missions, we have an entire new window of opportunity in front of us.”

The research is available as a pre-print and will soon be published in the journal Nature Astronomy.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more