Skip to main content

Astronomers discover how tiny dwarf galaxies form ‘fossils’

Galaxies come in many different shapes and sizes, including those considerably smaller than our Milky Way. These smaller galaxies, called dwarf galaxies, can have as few as 1,000 stars, compared to the several hundred billion in our galaxy. And when these dwarf galaxies age and begin to erode away, they can transform into an even smaller and more dense shape, called an ultra-compact dwarf galaxy.

The Gemini North telescope has recently been studying more than 100 of these eroding dwarf galaxies, seeing how they lose their outer stars and gas to become ultra-compact dwarf galaxies or UCDs.

A dwarf galaxy in the throes of transitioning to an ultra-compact dwarf galaxy as it’s stripped of its outer layers of stars and gas by a nearby larger galaxy.
This illustration shows a dwarf galaxy in the throes of transitioning to an ultra-compact dwarf galaxy as it’s stripped of its outer layers of stars and gas by a nearby larger galaxy. Ultra-compact dwarf galaxies are among the densest stellar groupings in the Universe. Being more compact than other galaxies with similar mass, but larger than star clusters — the objects they most closely resemble — these mystifying objects have defied classification. The missing piece to this puzzle has been a lack of sufficient transitional, or intermediate objects to study. A new galaxy survey, however, fills in these missing pieces to show that many of these enigmatic objects are likely formed from the destruction of dwarf galaxies. NOIRLab/NSF/AURA/M. Zamani

“Our results provide the most complete picture of the origin of this mysterious class of galaxy that was discovered nearly 25 years ago,” said one of the researchers, NOIRLab astronomer Eric Peng in a statement. “Here we show that 106 small galaxies in the Virgo cluster have sizes between normal dwarf galaxies and UCDs, revealing a continuum that fills the ‘size gap’ between star clusters and galaxies.”

While astronomers did predict that dwarf galaxies could become UCDs, they hadn’t observed many cases of one transforming into the other. So this study looked for these “missing links” to see how this transition occurred. They found that these in-between galaxies were most often located near larger galaxies, which stripped away stars and gas from the small dwarf galaxies to leave a UCD behind.

“Once we analyzed the Gemini observations and eliminated all the background contamination, we could see that these transition galaxies existed almost exclusively near the largest galaxies. We immediately knew that environmental transformation had to be important,” explained lead author Kaixiang Wang of Peking University.

These objects were spotted using data from sky surveys, which was followed up using observations from Gemini North. That allowed the researchers to pick out the small dwarf galaxies from the many background galaxies visible in the sky.

“It’s exciting that we can finally see this transformation in action,” said Peng. “It tells us that many of these UCDs are visible fossil remnants of ancient dwarf galaxies in galaxy clusters, and our results suggest that there are likely many more low-mass remnants to be found.”

The research is published in the journal Nature.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Spiral galaxy caught in the act as it’s about to eat its dwarf galaxy neighbor
The spiral galaxy NGC 1532, also known as Haley’s Coronet, is caught in a lopsided tug of war with its smaller neighbor, the dwarf galaxy NGC 1531. The image — taken by the US Department of Energy’s (DOE) Dark Energy Camera mounted on the National Science Foundation’s (NSF) Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab — captures the mutual gravitational influences of a massive- and dwarf-galaxy merger.

A recent image from the Dark Energy Camera shows an act of galactic cannibalism, with a spiral galaxy similar to our Milky Way about to devour a nearby dwarf galaxy that has wandered into its path.

The dramatic interaction is occurring between a large spiral galaxy known as Haley's Coronet and a smaller dwarf galaxy called NGC 1531. The dwarf galaxy is in the process of merging with the larger galaxy, which is being pulled into an irregular shape by the gravitational forces.

Read more
Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects -- but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it's possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

Read more
Astronomers spot the shiniest exoplanet ever discovered
An artist impression of exoplanet LTT9779b orbiting its host star.

When you look up at the night sky you see mostly stars, not planets -- and that's simply because planets are so much smaller and dimmer than stars. But you can see planets in our solar system, like Venus, which is one of the brightest objects in the night sky. Due to its thick, dense atmosphere, Venus reflects 75% of the sun's light, making it shine brightly. Recently, though, astronomers discovered a planet that reflects even more of its star's light, making it the shiniest exoplanet ever found.

Exoplanet LTT9779 b reflects 80% of the light from its star, which it orbits very close to. That makes it extremely hot, and researchers believe that the planet is covered in clouds of silicate and liquid metal, which is what makes it so reflective.

Read more