Skip to main content

As more EVs plug in, can our power grid step up? We ask the experts

how power companies plan to meet electric vehicle charging needs pecanstreetvoltpublic
Image used with permission by copyright holder
Why are we all still killing the electric car? Sure, range anxiety and high up-front costs make customers wary of purchase, along with uncertainty about longevity and usability. Yet beyond the normal and expected consumer caution, there is a steady drumbeat of derision asserting that electric cars are environmentally hazardous, a passing fad, and that the nation’s energy grid can’t handle more than a few EVs out on the road. Why?

Those objections have mostly proven false, and the world now asks when rather than if electric cars will become the norm. Yet as we wend our way to a gas-free world, and consumers get on board the greening, that last question lingers: Are utilities gearing up to meet the new demand for electricity?

What if we all plugged in at once?

Is California dreamin’?

California is the undisputed leader of the United States when it comes to promoting new automotive technology, particularly when it concerns environmental impact. With a huge population sprawled across great distances and historically underdeveloped mass transit capabilities, California has had to take the initiative to control air pollution. California has at times been so far ahead of the rest of the nation that automakers have made models specifically for the Golden State. Now it has a bold plan to encourage large-scale adoption of battery electric and plug-in hybrid vehicles. That plan is closely monitored by governments and automakers worldwide, because as California leads, the rest of the United States soon follows.

California has committed to reducing its greenhouse gas emissions to 80 percent below 1990 levels by the year 2050.

The driving force behind the plan is California’s committment to reduce its greenhouse gas emissions to 80 percent below 1990 levels by the year 2050. Transportation in all its forms accounts for 38 percent of California’s greenhouse gas emissions. Plug-in Hybrid (PHEV) vehicles generally reduce emissions by 60 percent, and Battery Electric Vehicles (BEV) reduce emissions by 85 percent of greenhouse gases and 90 percent of smog-forming emissions.

In 2012, California Governor Jerry Brown issued an executive order creating a goal of 1.5 million Zero Emission Vehicles (ZEVs) to be in use in California by 2025. That was followed up a year later with the California Air Resources Board’s ZEV Action Plan, which details how California plans to achieve its goals and provide the support necessary to keep all those EVs charged and running.

To call it ambitious is an understatement. Consider current sales figures: Americans bought 81,675 plug-in electrics during the first nine months of this year, according to stats gathered by hybridcars.com and Michigan market research firm Baum & Associates. And that’s all of America, not just California.

From Pecan Street to your street

Before you write off California’s plan as a fantasy smoked up by Governor Moonbeam, take a look around and you’ll see that automakers and power companies take the issue very seriously. Even if total EV adoptions don’t meet California’s aggressive goals, every automaker is looking at steep Corporate Average Fuel Economy (CAFE) standards that apply nationwide. Electrical utilities are looking at how they’ll manage the additional load – and how they might put a few oil industry dollars in their own pockets in the process.

In the heart of the oil patch, the University of Texas is working with Austin Energy, General Motors, and a host of other public and corporate organizations on Pecan Street, part of the massive 700-acre Mueller community devoted to research on sustainable water and energy issues. Residents of Pecan Street use the latest in smart metering and analysis to help companies and governments learn more about how energy is used. Additionally, the Pecan Street project monitors energy use in over 1,200 homes in Texas, California, and Colorado, and works with utilities to collect data on energy usage. Among the initiatives spawned at Pecan Street, Austin Energy and other companies are looking at residential demand and EV charging capabilities.

“As of July [2015], there were 3,145 registered plug-in electric vehicles in the Austin area. This number is up from just 273 vehicles in 2011,” according to Karl Popham of Austin Energy. “Our current load is about one-third industrial, one-third commercial, and one-third residential. If all transportation switched to electric vehicles, it would be about the equivalent of adding one-third on top of our total current load.”

Electric vehicles and the smart grid

One strident objection to electric vehicles has been that the current power grid in the United States would be strained under a large-scale migration to electric – the one-third increase Popham mentioned. However, research at Pecan Street and other locations is proving that electric cars can be integrated into a smart grid to maximize efficiency and drive energy costs down not only for EV users, but for all power users. “Integrated” is a key term, because the strategy is far more complex than simply plugging in and charging your car.

“Revenue from EV charging exceeds the marginal costs to deliver electricity to the customer, providing positive net revenues.”

“While many stakeholders had concerns during the initial EV launches (pre-2010) on the overall impact to the grid, broader studies by the Electric Power Research Institute as well as regional studies show virtually no concerns with generation and transmission,” says Alex Keros, Manager of Vehicle & Advanced Technology Policy at General Motors. “The question isn’t about the strain, but the network benefits we can design with technology and policies.”

The short version is that by implementing flexibility in charging, automakers and utilities can make the best use of available power resources. For example, solar power generation hits its peak efficiency from 2-4 p.m. each day, and by adding solar generation capacity near charging stations, extra power can be in place to charge EVs connected at workplaces during business hours. That’s important, but it’s a small step because about 80 percent of EV charging happens overnight at the owner’s residence.

To address that overnight demand, smart grids are being developed that begin charging EVs when evening power usage drops, or when electrical rates step down for the night. In both cases, managed charging allows utilities to offer lower pricing for flexible EV charging while avoiding the cost of wholesale upgrades to the grid.

SolarGrid
Image used with permission by copyright holder

“Stakeholders now realize deployment of EVs is an asset to the grid and grid planning. First, using tools like time-of-use pricing or demand response, EV assets can be deployed to make the network more efficient, which in turn places downward pressure on rates for all electric utility customers,” Keros told Digital Trends.

In the analysis provided for California’s ZEV Action Plan, the California Public Utility Commission found the same result: “The utility bills EV owners pay more than offset the costs incurred by the utility to deliver the electricity to charge the vehicles. Additional revenue from EV charging exceeds the marginal costs to deliver electricity to the customer, providing positive net revenues.”

The future is networked

Further out, it’s possible EVs will be networked into the grid to use and bank power as needed during peak usage hours in both daytime and evening. Innovations such as Tesla’s Powerwall point the way. The Powerwall is designed to store excess solar power generated during daylight hours for evening and overnight use, or to charge itself from the grid overnight when rates are lowest, and to provide uninterrupted conditioned power even during blackouts and surges. Under a fully networked smart grid, a neighborhood or business district with a substantial EV presence could achieve similar benefits by pulling power from EVs as needed and replacing that energy when conditions are optimal.

“The future of electric vehicle charging will be a marriage of renewable energy and battery storage.”

“In a future world, the energy storage and ancillary services such as frequency regulation offered by the batteries in EVs could really establish significant benefits by avoiding transmission or generation upgrades,” Keros says.

“The future of electric vehicle charging will be a marriage of renewable energy and battery storage as we look to address the intermittency of renewable solar and wind power,” says Rob Threlkeld, General Motors’ Manager of Renewable Energy.

Towards that end, GM has provided priority access to Chevrolet Volts to Pecan Street residents, and OnStar has provided access to the Volts’ charging interfaces to the Pecan Street consortium. The Pecan Street community is currently the largest concentration of Chevrolet Volt owners in the world. The partnership between GM and Pecan Street is helping to create a number of grid-relieving solutions, including charging only with renewable energyenergy demand response, time-of-use-rates, and home energy management.

“We are moving our lab demonstrations into the real world,” says Nick Pudar, OnStar’s Vice President of Strategy and Business Development. “We’re gathering information from families’ vehicles throughout this community to find out the direct impact the Volt has on the grid and how to get drivers the lowest-possible charging rates. This project will also help us develop future capabilities of the Volt and other plug-in electric vehicles.”

How to learn more

If you have the time and interest, you can check out the reports of the California Electric Transport Coalition in support of the state’s ZEV Action Plan. Two reports on grid impacts and benefits of widespread EV adoption total almost 200 pages of research and analysis.

Beyond that, you can read more about the whole Pecan Street sustainability project here.

Jeff Zurschmeide
Jeff Zurschmeide is a freelance writer from Portland, Oregon. Jeff covers new cars, motor sports, and technical topics for a…
The Kia EV3 could be the cheap electric SUV we’ve been waiting for
White Kia EV3

The Kia EV9 was already one of the cheapest ways to get an electric SUV, but now the company is taking things to the next level. After teasing the Kia EV3 last year, the car is now official.

The EV3 is built to be a slightly smaller, cheaper version of the EV9 -- following the path of the Rivian R2, which arrived after the Rivian R1S. It's certainly not as technologically advanced as the EV9, but it still looks unmistakably like a modern Kia, and is clearly a sibling of the larger SUV. On the outside, the vehicle has the same split taillights and very similar Tiger Face front. But it is quite a bit smaller. The vehicle will be available in nine finishes -- however only "Aventurine Green" and "Terracotta" are being announced right now.

Read more
Kia EV3: release date, performance, range, and more
White Kia EV3

Kia is on a roll. Hot on the heels of the success of the Kia EV6 and EV9, the company is already announcing what could be its cheapest electric vehicle yet -- the Kia EV3.

The Kia EV line seems to follow the rule of lower numbers indicating a lower price — and if so, the EV3 will end up being the cheapest electric car Kia has released to date. That, however, thankfully doesn’t mean that the EV3 will be a low-end car — it just means that Kia may be pushing the boundaries on electric car pricing.

Read more
Kia EV3 vs Tesla Model Y: Can Kia’s new entry-level car take on Tesla?
White Kia EV3

The Kia EV3 is finally coming, and it could well end up being the best small-size electric SUV to buy when it finally rolls out. It's smaller than the Kia EV9, but it offers many of the same design elements and features. But there's another small-size electric car that's currently one of the most popular vehicles out there -- the Tesla Model Y.

How does the Kia EV3 compare with the Tesla Model Y? And is one vehicle actually better than the other? We put the Kia EV3 and the Tesla Model Y head-to-head to find out.
Design
The design of the Kia EV3 is very different than that of the Model Y, though they're both reasonably good-looking vehicles.

Read more