Skip to main content

Origami-inspired artificial muscles can lift 1,000 times their body weight

Origami-Inspired Artificial Muscles
Robots just got a boost in strength thanks to researchers at Harvard’s Wyss Institute and MIT’s Computer Science and Artificial Intelligence Laboratory, who have developed artificial muscles capable of lifting up to 1,000 times their own weight. Despite that super strength, the soft robots are relatively simple creatures, made up of metal and plastic “skeletons” surrounded by air or liquid, and encased in a plastic or textile outer “skin.”

Over the past few decades, soft robotics have made significant advancements in flexibility, allowing them to mimic the movement of biological muscles through the use of actuators. As with a human hand, this physical flexibility allows them to adapt and perform a range of tasks.

However, this dexterity tends to come at the cost of strength, since softer and more flexible materials are often used. In the new design, air or water pressure gives the actuators added strength that otherwise couldn’t be achieved through the materials themselves.

“Artificial muscle-like actuators are one of the most important grand challenges in all of engineering,” Rob Wood, a professor of engineering at Harvard and one of the authors of a paper published this week in the journal PNAS, said in a statement. “Now that we have created actuators with properties similar to natural muscle, we can imagine building almost any robot for almost any task.”

If the soft robots’ strength sounds extraordinary, that’s because it is. In fact, it was a shock even to its creators.

“We were very surprised by how strong the actuators […] were. We expected they’d have a higher maximum functional weight than ordinary soft robots, but we didn’t expect a thousand-fold increase. It’s like giving these robots superpowers,” said Daniela Rus, a professor of engineering and computer science at MIT and one of the authors of the paper.

Inspired by origami, the robots’ design allows them to fold into programmable patterns to save space. Twist them in a certain way and they’ll fold together neatly. Useful as that may be for keeping things packed and orderly, it does create a drawback in that they’re not as easily controlled as conventional robots, since their movements depend on their skeleton, which cannot be adjusted.

Still, the researchers don’t consider this to be all that limiting. By physically designing the robots to move in certain ways, the algorithms required to control them can be simplified. And since the robots are made up of such simple materials, the researchers say one of the actuators can be built in ten minutes for less than a dollar.

Moving forward Rus and her team want to develop even more complex structures, including an artificial elephant trunk that can move and grip just like the real thing.

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more