Skip to main content

A milestone in the history of particle physics: Why does matter exist?

tech projects
CERN’s Large Hadron Collider CERN

Antimatter is a strange beast. Physicists believe that for every particle that exists in our universe, there is an antiparticle which is identical but has the opposite charge. But when antimatter meets matter, both particles are annihilated in a flash of energy. This leads to a tricky conundrum: if matter and antimatter were both produced in equal amounts by the Big Bang, why is there so much matter around us today, and so little antimatter?

Antimatter does occur naturally in radioactive processes, such as when Potassium-40 decays. In a delightful factoid, CERN researcher Marco Gersabeck writes this means that “your average banana (which contains Potassium) emits a positron every 75 minutes.” But overall, we have observed much, much more matter in the universe than antimatter.

A new experiment from CERN may hold the answer to this decades-long puzzle. Experiments have shown that particles like mesons, which consist of one quark and one anti-quark, can spontaneously turn into anti-mesons, and visa versa — but this process happens more in one direction than the other. Anti-quarks are more likely to turn into quarks than quarks are to turn into anti-quarks, which physicists refer to as a CP violation. Over time, this means more matter accrues in the universe.

These asymmetries, as they are known, have been observed in several types of quarks. In total, there are six types or “flavors” of quark (up, down, top, bottom, strange, and charm) and asymmetries have previously been observed in strange and bottom quarks, both of which are negatively charged. Theoretical work says the only type of positively charged quarks that should show asymmetry are charm quarks — although the effect would be very small and therefore hard to observe.

The new experiment looked at particles called D mesons which are made of charm quarks. Scientists were able to observe asymmetry in D mesons by looking at the particles created in collisions in the Large Hadron Collider (LHC). They looked at the full dataset from the seven years of LHC operations between 2011 and 2018, and checked for the decays of both D mesons and anti-D mesons. They found tiny but statistically significant differences between the two, providing the first evidence of asymmetry in charm quarks.

It is possible that the asymmetry observed here was not due to the same mechanism as the asymmetry of strange and bottom quarks. But even so, that would still be an exciting finding — because it raises the possibility of other types of matter-antimatter asymmetries.

“The result is a milestone in the history of particle physics,” Eckhard Elsen, CERN Director for Research and Computing, said in a statement. “Ever since the discovery of the D meson more than 40 years ago, particle physicists have suspected that CP violation also occurs in this system, but it was only now, using essentially the full data sample collected by the experiment, that the LHC collaboration has finally been able to observe the effect.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more