Skip to main content

Searching for habitable planets in the Goldilocks Zone of K stars

An artist’s concept of a planet orbiting in the habitable zone of a K star. NASA Ames/JPL-Caltech/Tim Pyle

Not too hot, not too cold — this one’s just right. To identify potentially habitable worlds, astronomers search in the “Goldilocks Zone” around stars to find planets where liquid water can exist on the surface. Now a new study has identified types of star called K stars which make especially promising targets to host habitable planets.

K stars are less bright than our Sun, but brighter than the dimmest stars — called M stars or red dwarfs. This means K stars shine for a much greater length of time than our Sun, lasting between 17 billion and 70 billion years as compared to our Sun’s 10 billion years. The K stars are also more stable, experiencing less extreme activity when they are young than M stars which go through dramatic phases of stellar flares, and give off so much energy that they could boil oceans on nearby planets. All together, these factors mean that K stars have long periods when they are stable, giving plenty of time for potential life to evolve.

“I like to think that K stars are in a ‘sweet spot’ between Sun-analog stars and M stars,” Giada Arney of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, said in a statement.

Traditionally, the search for habitable planets has focused primarily on M stars because they are so prevalent, making up about three quarters of all the stars in the universe. But K stars may make better targets for the search, not only because they are long-lived and stable, but also because it is easier to spot potential signs of life near them.

One way to see potential sites of life is to look for a planet with both oxygen and methane in its atmosphere. These two gases usually react and destroy each other, so if you see both present at the same time it suggests that something must be producing them both — and that something could be life. But in order to detect oxygen and methane in a planet’s atmosphere from a long way off, they both must be present in large quantities.

Arney used computer modelling to see how different types of planetary atmosphere would respond to different star hosts. She found that the biosignature of oxygen and methane would be strongest when the planet in question orbited around a K star.

“When you put the planet around a K star, the oxygen does not destroy the methane as rapidly, so more of it can build up in the atmosphere,” Arney said in the same statement. “This is because the K star’s ultraviolet light does not generate highly reactive oxygen gases that destroy methane as readily as a Sun-like star.”

Arney also indicated particular K stars which would be prime targets for investigation, including 61 Cyg A/B, Epsilon Indi, Groombridge 1618, and HD 156026.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more