Skip to main content

Newly developed microbots can capture and transport individual cells

NC State: Microbot and Micro-Origami
Microscopic robots have been created by researchers at North Carolina State University and Duke University. By converting magnetic energy from their environment into movement, the devices can capture and transport single cells, demonstrating a step forward for microbots that function at a cellular level.

“To create the microbots, we started by making polymer cubes that have a metallic coating on one side, essentially allowing the metallic side to act as a micro-magnet,” Koohee Han, first author of the study and Ph.D. candidate at NC State, told Digital Trends. “Depending on their position, the cubes can be assembled in many different ways. Once assembled, the microbots open when a magnetic field is applied and close when the field is removed. The orientation and gradient of the magnetic field allows us to control the rotation and movement of the microbots.”

Microbots aren’t a new development but the new study demonstrates progress in the field. Whereas previously reported versions had rigid bodies that restricted them to simple tasks like pushing and penetrating, the bots made by Han and his team have the ability to fold and change their shape like origami, enabling them to attach together, open, and close through magnetic stimulation.

In their study, the researchers tasked the microbots with capturing and transporting a live yeast cell, and controlled their movement by activating and deactivating the magnetic field.

“The ability to remotely control the dynamic reconfiguration of our microbot creates a new platform for exquisitely manipulating micro-scale objects such as single-cell isolation and targeted drug delivery,” said Wyatt Shields, co-author of the study and postdoctoral researcher at Duke University and NC State University. “Although this technology is still in its early stages, we believe these tools could one day entirely replace expensive and tedious micro-manipulators.”

The researchers point out that their current design is limited to 2D functions but they see their study as driving forward small, self-reconfigurable machines.

“We expect the principles of this simple platform can be extended to more advanced structures by using more advanced particle shapes, compositions, and field parameters to address a broad range of applications, from robotics and micro-manipulation to responsive materials and on-demand reconfigurable structures,” said Orlin Velev, corresponding author and professor of chemical and biomolecular Engineering at NC State.

A paper detailing the study was published this week in the journal Science Advances.

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more