Skip to main content

Collisions of neutron stars create element that makes fireworks sparkle

An artist’s impression of strontium emerging from a neutron star merger. ESO/L. Calçada/M. Kornmesser

When massive neutron stars collide, they don’t only produce dazzling light, bursts of gamma rays, and magnetic fields trillions of times stronger than the field on Earth. Scientists from the European Southern Observatory (ESO) have found that they can also create heavy elements like strontium, finally answering a long-standing puzzle about the origin of certain elements found on Earth.

Strontium is found naturally in a few places on our planet, mostly within soil or concentrated in minerals like celestine and strontianite. Its best known use, however, is something rather less scientific: It is used in fireworks to give a deep, rich red color.

Since the 1950s, scientists have been working out how and where different elements were originally formed. They knew that many elements were created in cosmic events like supernovae, but before now they didn’t have confirmation of how the heavier elements were created.

“This is the final stage of a decades-long chase to pin down the origin of the elements,” lead author Darach Watson of the University of Copenhagen said in a statement. “We know now that the processes that created the elements happened mostly in ordinary stars, in supernova explosions, or in the outer layers of old stars. But, until now, we did not know the location of the final, undiscovered process, known as rapid neutron capture, that created the heavier elements in the periodic table.”

It was data from a neutron star merger observed in 2017 that led them to this discovery. “By reanalyzing the 2017 data from the merger, we have now identified the signature of one heavy element in this fireball, strontium, proving that the collision of neutron stars creates this element in the universe,” Watson said.

The data was collected using the ESO’s Very Large Telescope in Chile, which trained its X-shooter instrument on the site of two neutron stars colliding. The X-shooter is an intermediate resolution spectroscopy device, allowing imaging across a wide range of wavelengths from ultraviolet to infrared. This range of wavelengths meant scientists could see the aftereffects of the merger, called a kilonova, and could see the likely presence of heavier elements.

The process through which the strontium is created, rapid neutron capture, requires conditions even hotter than within the core of a star. It can only happen in the presence of free neutrons and very high temperatures, such as in a neutron star merger.

According to another scientist involved in the study, Camilla Juul Hansen from the Max Planck Institute for Astronomy in Heidelberg, Germany, this tells us not only about the origin of elements, but also more about neutron stars themselves. “This is the first time that we can directly associate newly created material formed via neutron capture with a neutron star merger, confirming that neutron stars are made of neutrons and tying the long-debated rapid neutron capture process to such mergers.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more