Skip to main content

Massive neutron stars smash together, forging gold in an explosive kilonova

Artist’s illustration of two colliding neutron stars. NASA/Swift/Dana Berry

The Laser Interferometer Gravitational-wave Observatory (LIGO) famously detects gravitational waves by looking at the collisions of black holes. It also looks at collisions of other cosmic bodies, such as when it detected the first observed merger between two neutron stars in 2017. Now, a team of astronomers has looked back at older data to observe what happens during these epic impacts.

When two neutron stars collide, the impact creates an explosion — not a supernova, which is what happens when a star dies, but a kilonova. The merging of the neutron stars gives off massive bursts of gamma rays and electromagnetic radiation, but the process isn’t purely destructive. It also creates, by forging heavy metals like platinum and gold. In fact, a kilonova forms several planets’ worth of heavy metals in one swoop, and it is believed that this is how the gold on Earth was created.

Since scientists observed the neutron star merger in 2017, they have learned more about what a kilonova would like like to us here on the Earth. And this has allowed them to look back at older data and spot previous kilonovae as well. There was a gamma-ray burst observed in August 2016, named GRB160821B, and recent re-examination of the data showed that a previously unnoticed kilonova had in fact occurred.

“The 2016 event was very exciting at first,” Eleonora Troja, lead author of the study, said in a statement. “It was nearby and visible with every major telescope, including NASA’s Hubble Space Telescope. But it didn’t match our predictions — we expected to see the infrared emission become brighter and brighter over several weeks.”

That’s not what happened though. “Ten days after the event, barely any signal remained,” Troja continued. “We were all so disappointed. Then, a year later, the LIGO event happened. We looked at our old data with new eyes and realized we had indeed caught a kilonova in 2016. It was a nearly perfect match. The infrared data for both events have similar luminosities and exactly the same time scale.”

As the data from the 2016 event looks so similar to the data from the 2017 event, the researchers are fairly confident that the 2016 event was also caused by the merging of two neutron stars. There are other ways to generate a kilonova, such as the merging of a black hole and a neutron star, but scientists think that this would likely generate different observations in terms of X-ray, infrared, radio and optical light signals.

The findings are published in the journal Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more