Skip to main content

Here’s who won the 2018 Nobel Prizes in Science and why

2018’s Nobel-winning scientists targeted tumors and built optical tweezers

Love them or hate them, the Nobel Prizes in Science remain some of the highest accolades in the world. Awarded almost annually by the Nobel Foundation and Royal Swedish Academy of Sciences, the prizes honor individuals who’ve made outstanding contributions to physics, chemistry, and medicine. Some say the Nobel prizes fail modern-day science. Others have called them an absurd way of honoring achievement.

For their part, the Nobel Foundation probably thinks their awards help grease the wheels of progress and keep researchers doing the things they’re doing. One thing is for sure — the prize winners’ achievements are nothing short of extraordinary.

Here’s a brief breakdown of the 2018 Nobel Prizes in Science award winners, along with an explanation about why their work matters. (In case you missed it, here’s our breakdown of last year’s winners.)

Physics

Winners: Arthur Ashkin, Gérard Mourou, and Donna Strickland

Why they won: Arthur Ashkin from Bell Laboratories in Holmdel, United States, was awarded the prize “for his groundbreaking inventions in the field of laser physics.”

The second half of the award was granted to Donna Strickland and Gérard Mourou for their chirped pulse amplifications, “a method of generating high-intensity, ultra-short optical pulses.” Strickland is a researcher at the University of Waterloo in Canada. Mourner is from École Polytechnique, Palaiseau, France and University of Michigan, Ann Arbor.

Why it matters: Ashkin’s lasers can be used like “optical tweezers” to manipulate particles as small as atoms, to probe how they function in biological systems. This sounds pretty sci-fi but it’s been widely used in the real world since Ashkin made his breakthrough in 1987. The minuscule tool may be used to unlock the ever-allusive secrets of the quantum world, and aid in the emerging field of quantum biology.

Through their research, Strickland and Mourou cleared the way for scientists to generate the shortest and most intense laser pulses ever created by humans. By stretching the laser pulses out over time, then amplifying the pulse, and finally compressing the pulse, they were able to pack a ton energy into a small amount of space. Chirped pulse amplifications are now used in millions of corrective eye surgeries each year. The two researchers made their first breakthrough in 1985.

It’s also important to note that Strickland’s win makes her only the third woman to win a Nobel in physics and the first woman in 55 years to be recognized with the prize.

Chemistry

Winners: Frances H. Arnold, George P. Smith, and Gregory P. Winter

Why they won: Arnold, from the California Institute of Technology, was awarded the prize “for the directed evolution of enzymes.”

Smith and Winter won “for the phase display of peptides and antibodies.” Smith is from the University of Missouri, Columbia and Winter is from MRC Laboratory of Molecular Biology in Cambridge, United Kingdom.

Why it matters: The winners each used genetic change and selection—inherent aspects of evolution—to create proteins that chip away at some of the chemical conundrums faced by humanity.

In 1993, Arnold conducted the first directed evolution of enzymes, a class of proteins that kickstart chemical reactions. Over the next 15 years, she refined her technique, enabling the production of new enzymes that allow for chemical manufacturing techniques that are less harmful to the environment. Today, these enzymes are used to fabricate everything from pharmaceutical drugs that save lives to biofuels that could help save the planet as alternatives to fossil fuels.

Smith made his breakthrough in 1985 with the development of phage display, a method in which a bacteriophage (a virus that infects bacteria) is used to create new proteins. Winter later used this method for the directed evolution of antibodies that led to new pharmaceuticals, the first of which was Adalimumab, used to treat rheumatoid arthritis, psoriasis, and inflammatory bowel diseases. More recent pharmaceuticals created through phage displays have been used to neutralize toxins and cure metastatic cancer.

Medicine

Winners: James P. Allison and Tasuku Honjo

Why they won: Allison and Honjo share the prize “for their discovery of cancer therapy by inhibition of negative immune regulation.”

Why it matters: In his research, Allison investigated a protein found on immune cells, which were known to act as a braking mechanisms for the immune system. The researcher’s breakthrough came when he recognized that, by easing off the brake, immune responses could be accelerated to target tumors. Allison’s innovative approach has since been turned into therapies, including for the treatment of an advanced form of skin cancer.

Honjo, meanwhile, identified another immune-cell protein, which also acts as a brake, but functions differently than the one studied by Allison. Over the following years, Honjo unraveled the role of the protein, while he and other researchers leveraged the findings to develop new and effective treatments for cancer patients.

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more
AI turned Breaking Bad into an anime — and it’s terrifying
Split image of Breaking Bad anime characters.

These days, it seems like there's nothing AI programs can't do. Thanks to advancements in artificial intelligence, deepfakes have done digital "face-offs" with Hollywood celebrities in films and TV shows, VFX artists can de-age actors almost instantly, and ChatGPT has learned how to write big-budget screenplays in the blink of an eye. Pretty soon, AI will probably decide who wins at the Oscars.

Within the past year, AI has also been used to generate beautiful works of art in seconds, creating a viral new trend and causing a boon for fan artists everywhere. TikTok user @cyborgism recently broke the internet by posting a clip featuring many AI-generated pictures of Breaking Bad. The theme here is that the characters are depicted as anime characters straight out of the 1980s, and the result is concerning to say the least. Depending on your viewpoint, Breaking Bad AI (my unofficial name for it) shows how technology can either threaten the integrity of original works of art or nurture artistic expression.
What if AI created Breaking Bad as a 1980s anime?
Playing over Metro Boomin's rap remix of the famous "I am the one who knocks" monologue, the video features images of the cast that range from shockingly realistic to full-on exaggerated. The clip currently has over 65,000 likes on TikTok alone, and many other users have shared their thoughts on the art. One user wrote, "Regardless of the repercussions on the entertainment industry, I can't wait for AI to be advanced enough to animate the whole show like this."

Read more