Skip to main content

Genetically engineered bacteria could be the key to mass-produced spider silk

spider silk nasa
pbombaert/Getty Images

As materials go, spider silk is pretty darn interesting. With its combination of tensile strength, toughness, and ductility, it’s one of nature’s most impressive inventions. It’s incredibly versatile, too. We might be used to spider silk being employed by, well, spiders to trap prey, line nests, or create alarm lines, but there are plenty of applications in the human-sized world, too. These include lightweight bulletproof shields, ultrathin medical sutures, high-strength safety belts, and plenty more.

Unfortunately, there’s a problem. Spider silk isn’t easy to farm and, while spiders produce impressive quantities of it relative to their size, that’s still a tiny amount in our terms. It’s not easy to set up spider farms to farm it in bulk either. That’s because some species of spider can turn cannibalistic when they’re kept in groups. As a result, many scientists and other researchers are left positing the amazing potential uses of spider silk, but with few practical ways of putting these into action. Other attempts to try and produce spider silk minus the spiders (using everything from yeast to goats) have been unable to match the spectacular qualities of the real thing. Where’s Spider-Man when you need him?

Fortunately, things may be changing. Researchers from Washington University in St. Louis have demonstrated a new way to create spider silk in the lab — in a way that could prove to be highly reproducible. Their work was presented this week at the American Chemical Society (ACS) Spring 2019 National Meeting & Exposition.

Christopher Bowen

“We created synthetic spider silk by optimizing a synthetic DNA sequence to encode a high molecular weight spider silk protein and engineering bacteria to facilitate its overproduction,” Fuzhong Zhang, lead researcher on the project, told Digital Trends.

It sounds (and is) fairly complex, but it could also be a game changer. The team essentially figured out how to genetically edit bacteria to create super-strong spider silk. This involved dividing spider silk genes into smaller pieces, which were then reassembled after being integrated into a bacterial genome. The resulting microbially produced spider silk matched the properties of natural spider silk in everything from its stronger-than-steel strength to its stretchability. So far, the researchers have been able to use the technique to obtain up to 2 grams of silk per liter of bacterial culture. They hope to increase this yield in the future.

“The next step is to make the bioproduction process more scalable and more economically competitive,” Zhang said.

Should all go according to plan, NASA is hoping that spider silk could turn out to be a useful material to have on missions.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more