Skip to main content

The earliest galaxies shone brightly in the young universe

This artist’s illustration shows what one of the very first galaxies in the universe might have looked like. High levels of violent star formation and star death would have illuminated the gas filling the space between stars, making the galaxy largely opaque and without a clear structure. James Josephides (Swinburne Astronomy Productions)

Observations from NASA’s Spitzer Space Telescope have shown the earliest galaxies in the universe were brighter than previously thought, shedding light onto the way that the universe evolved.

The new study has revealed that the earliest galaxies formed in our universe were much brighter than galaxies are today. This enhanced brightness was specific to certain wavelengths of infrared light, but it applied to a large number of galaxies in this early period of less than 1 billion years after the Big Bang.

“We did not expect that Spitzer, with a mirror no larger than a Hula-Hoop, would be capable of seeing galaxies so close to the dawn of time,” Michael Werner, Spitzer’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, said in a statement. “But nature is full of surprises, and the unexpected brightness of these early galaxies, together with Spitzer’s superb performance, puts them within range of our small but powerful observatory.”

The findings give more information about a period of transition in the early universe called the Epoch of Reionization. This was the time at which the smooth substance of the universe, called the intergalactic medium, began to form into the first luminous sources such as stars, galaxies, and quasars. Before this, light struggled to cross space as is was blocked by the hydrogen, so the universe was generally opaque.

This change happened between 100 million and 200 million years after the Big Bang, and scientists are still not quite sure what caused the birth of the earliest stars. At some point the hydrogen gas that made up the intergalactic medium began to coalesce into stars, which then formed galaxies. This is known as reionization because electrons were stripped away from the hydrogen, forming hydrogen ions.

“These results by Spitzer are certainly another step in solving the mystery of cosmic reionization,” Pascal Oesch, an assistant professor at the University of Geneva and a co-author of the study, said in the same statement. “We now know that the physical conditions in these early galaxies were very different than in typical galaxies today. It will be the job of the James Webb Space Telescope to work out the detailed reasons why.”

The findings are published in the journal Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more