Skip to main content

Open wide! Researchers develop medical sensors powered by stomach acid

stomach acid power stomachacid
Diemut Strebe
Internal medical devices like pacemakers require reliable power but batteries are bulky and technology is transitioning to the nanoscale. Given the safety risks associated with conventional batteries, it’s easy to see why alternative power sources are in high demand, and why researchers around the world are exploring innovative and sometimes strange solutions.

Last month, researchers at the University of Bern in Switzerland demonstrated that under-the-skin solar cells can power a typical pacemaker. Now, engineers from the Massachusetts Institute of Technology (MIT) and Brigham and Women’s Hospital have harnessed the power of stomach acid to keep small ingestible sensors running.

The stomach acid-powered device uses a principle similar to that of the lemon battery, a makeshift power source made of two electrodes stuck into a lemon. “In our system the gastrointestinal fluid serves as the electrolyte with the copper and zinc servicing as the cathode and anode respectively,” Giovanni Traverso, one of the researchers who lead the project, told Digital Trends. “Our system includes electronics to boost the energy from the battery to a much higher voltage where it can do useful work. For example, we demonstrated the ability to take temperature readings and transmit them wirelessly.”

Traverso collaborated Anantha P. Chandrakasan and Robert Langer, with whom he’d previously developed an ingestible device that could measure biometrics like temperature and heart rate while passing through the body.

A paper published in this week’s Nature Biomedical Engineering journal describes how the team tested its stomach acid-powered device in pigs and was able to capture wireless data from a distance of about six feet every twelve seconds. Although the device’s power supply decreased significantly as it passed from the stomach to the small intestine, it could still generate enough power to transmit data, although less frequently.

“The system demonstrates the potential for long-term harvesting from the gastrointestinal tract and therefore could be applied to a broad set of applications in diagnosis and treatment interventions,” Traverso said. “Specifically, we explored the continuous monitoring of temperature as a model and also showed the potential for drug delivery using the harvested energy.”

The current prototype measures in at 40 millimeters long and 12 millimeters in diameter. The researchers hope to miniaturize a working device to a third of that size.

“We are interested in exploring the coupling of systems like these with some of the other technologies we are developing which enable safe and prolonged gastrointestinal residence,” Traverso said. On top of that, the team is developing sensors that can measure biometrics to detect disease earlier than currently possible. “Coupled with drug delivery, we envision the development of whole new set of ingestible long-term resident electronic systems,” he added.

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more