Skip to main content

Seeing without sight: New technique enables blind mapping of nanostructures

thermal noise imaging chair
Jenna Luecke
In an effort to study how our bodies work at the nanoscale, researchers from the University of Texas in Austin have developed an innovative technique that produces higher-resolution 3D images than previous methods.

Our bodies are squishy, porous, fluid-filled things. Slight changes in heat can mean significant changes in the nanoscale structures that we are made of. These random structural fluctuations — also called Brownian motion — make it difficult to capture clear, detailed, 3D images of the nano-parts of our bodies.

“We don’t need to build a complicated mechanism to move our probe around. We sit back and let nature do it for us.”

One common technique is to add chemical stiffeners to biological samples, fixing them in place long enough for sensors and microscopes to focus. But when these chemicals are applied, the samples lose their natural form and functional properties. Researchers can also focus on some — but not all — nanostructures when they’re pressed against a glass surface.

Neither of these methods is ideal, and so fifteen years ago, Dr. Ernst-Ludwig Florin and his team developed a technique called thermal noise imaging. They first patented and described their technique in 2001 but have only now been able to demonstrate that it works in a paper published this week in the journal Nature Communications.

To understand how thermal noise imaging works, the researchers offer the following analogy: You’ve been asked to map a completely dark room using only a fluorescent bouncy ball and a fast-shudder camera. Pointing the camera into the room, you toss the ball and quickly take many consecutive photos as the ball bounces around. You notice that the ball ricochets off of some unseen objects and that its fluorescent light shines around others. By stitching together these photos, you could map the room’s negative space and determine the location and shape of the various objects.

In thermal noise imaging, the dark room is a biological sample and the fluorescent ball is a nanosphere, which bounces in Brownian motion, the same erratic effect that makes most microscopy images so blurry. “We’ve turned it to our advantage,” Florin said in a press release. “We don’t need to build a complicated mechanism to move our probe around. We sit back and let nature do it for us.”

Using the new technique, Florin and his team were able to measure the mechanical properties of collagen fibrils for the first time with a resolution better than 10 nanometers, according to the researchers. These findings bring scientists one step closer to understanding our skin’s elasticity — and one step closer to creating its artificial analog.

“If you want to build artificial skin, you have to understand how the natural components work,” says Florin. “You could then better design a collagen network that acts as a scaffolding that encourages cells to grow in the right way.”

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more