Skip to main content

Could the supermassive black hole at the center of our galaxy harbor a wormhole?

An artist’s impression of a wormhole in space. deselect / Pixabay

Wormholes which bend the fabric of space-time are a staple of science fiction writing, but a team of theoretical physicists is working to see if they could have a place in reality as well.

Researchers from Case Western Reserve University, University at Buffalo College of Arts and Sciences, and Yangzhou University have come up with a technique for detecting traversable wormholes — theoretical tunnels in space-time which could allow objects to travel great distances across the galaxy or even the universe. They turned their attention to the supermassive black hole at the center of our galaxy, Sagittarius A*, to see if it could harbor such a wormhole.

“By studying the orbits of stars around the black hole at the center of our galaxy, we could soon tell if this black hole harbors a traversable wormhole,” the researchers said in their paper.

The technique works by looking at perturbations or wobbles in the path of stars, such as the S2 star which is in orbit around Sagittarius A*.

“If you have two stars, one on each side of the wormhole, the star on our side should feel the gravitational influence of the star that’s on the other side,” Professor Dejan Stojkovic, a cosmologist at the University at Buffalo College of Arts and Sciences, explained in a statement. “The gravitational flux will go through the wormhole. So if you map the expected orbit of a star around Sagittarius A*, you should see deviations from that orbit if there is a wormhole there with a star on the other side.”

If the technique is successful, it could be used in the future to see whether a wormhole is likely to exist at the center of our galaxy.

However, don’t get too excited about the possibility to using the wormhole to travel to other worlds just yet. “If wormholes are ever discovered, they’re not going to be the kind that science fiction often envisions,” Stojkovic said. “Even if a wormhole is traversable, people and spaceships most likely aren’t going to be passing through. Realistically, you would need a source of negative energy to keep the wormhole open, and we don’t know how to do that. To create a huge wormhole that’s stable, you need some magic.”

To be clear, there is no evidence yet that wormholes exist. But they are theoretically possible, and could provide a solution to some puzzles in modern physics. “They are a legitimate solution to Einstein’s equations,” Stojkovic said.

The new research is published in the journal Physical Review D.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This incredible image shows the magnetic field of a black hole
A view of the M87 supermassive black hole in polarised light

The Event Horizon Telescope (EHT) collaboration, which produced the first-ever image of a black hole released in 2019, has today a new view of the massive object at the center of the Messier 87 (M87) galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of a black hole.  This image shows the polarized view of the black hole in M87. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole. EHT Collaboration

The Event Horizon Telescope (EHT) project, the international collaboration which famously captured the first-ever image of a black hole, has released another new and unique image showing the same black hole's magnetic field.

Read more
How James Webb will peer through a dusty cloud to study supermassive black hole
Centaurus A sports a warped central disk of gas and dust, which is evidence of a past collision and merger with another galaxy. It also has an active galactic nucleus that periodically emits jets. It is the fifth brightest galaxy in the sky and only about 13 million light-years away from Earth, making it an ideal target to study an active galactic nucleus – a supermassive black hole emitting jets and winds – with NASA's upcoming James Webb Space Telescope.

Centaurus A sports a warped central disk of gas and dust, which is evidence of a past collision and merger with another galaxy. It also has an active galactic nucleus that periodically emits jets. It is the fifth brightest galaxy in the sky and only about 13 million light-years away from Earth, making it an ideal target to study an active galactic nucleus – a supermassive black hole emitting jets and winds – with NASA's upcoming James Webb Space Telescope. X-ray: NASA/CXC/SAO; optical: Rolf Olsen; infrared: NASA/JPL-Caltech; radio: NRAO/AUI/NSF/Univ.Hertfordshire/M.Hardcastle

When the James Webb Space Telescope launches later this year, it'll be the most complex space observatory in the world. Now, NASA has shared a glimpse into the kind of work that it will be able to perform in a profile of research that will be conducted on the nearby galaxy Centaurus A.

Read more
This beautiful galaxy is being warped by its hungry supermassive black hole
This image of the spiral galaxy Messier 106, or NGC 4258, was taken with the Nicholas U. Mayall 4-meter Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. A popular target for amateur astronomers, Messier 106 can also be spotted with a small telescope in the constellation Canes Venatici.

This image of the spiral galaxy Messier 106, or NGC 4258, was taken with the Nicholas U. Mayall 4-meter Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. A popular target for amateur astronomers, Messier 106 can also be spotted with a small telescope in the constellation Canes Venatici. KPNO/NOIRLab/NSF/AURA Acknowledgment: PI: M.T. Patterson (New Mexico State University) Image processing: T.A. Rector (University of Alaska Anchorage), M. Zamani & D. de Martin

This stunning image of a distant galaxy was captured by the ground-based Nicholas U. Mayall 4-meter Telescope in the Arizona-Sonoran Desert. To capture distant objects in such detail, the telescope has a Mosaic camera that combines multiple captures into one image.

Read more