Skip to main content

Age of ancient galaxy discovered by Webb confirmed using ALMA

Since the James Webb Space Telescope launched in December 2021, astronomers and the public have been excited to see how powerful this new tool is, and how it has been able to see some of the most distant galaxies ever observed. However, as cutting-edge science, some of these early results have been contentious as astronomers work to figure out how accurate the data is, due to issues like calibration of the instruments.

Another way to verify results is to look for supporting evidence from other tools, such as recent work using the Atacama Large Millimeter/submillimeter Array or ALMA, a ground-based array of telescopes located in Chile, which has confirmed the age of a very distant galaxy using the detection of oxygen.

A distant JWST-identified galaxy, GHZ2/GLASS-z12.
The radio telescope array ALMA has pinpointed the exact cosmic age of a distant JWST-identified galaxy, GHZ2/GLASS-z12, at 367 million years after the Big Bang. ALMA’s deep spectroscopic observations revealed a spectral emission line associated with ionized oxygen near the galaxy, which has been shifted in its observed frequency due to the expansion of the Universe since the line was emitted. This observation confirms that the JWST is able to look out to record distances, and heralds a leap in our ability to understand the formation of the earliest galaxies in the Universe. NASA / ESA / CSA / T. Treu, UCLA / NAOJ / T. Bakx, Nagoya U.

A group of researchers from Nagoya University and the National Astronomical Observatory of Japan looked at a galaxy named GHZ2 or GLASS-z12, which was first identified in the James Webb GLASS survey. To see if the galaxy really was as old as it appeared to be, the researchers used ALMA to perform a technique called spectroscopy, in which light coming from the target is broken down into different wavelengths. This shows which wavelengths are missing because they have been absorbed by a particular element — in this case, oxygen.

The research looked at the emission line of oxygen and confirmed its redshift, which refers to the shifting of light from a distant target toward the red end of the spectrum due to the expansion of the universe. This allowed them to confirm that galaxy GLASS-Z12 is extremely old, dating back to 367 million years after the Big Bang.

“The first images of the James Webb Space Telescope revealed so many early galaxies, that we felt we had to test its results using the best observatory on Earth,” said lead author Tom Bakx of Nagoya University in a statement. “It was a very exciting time to be an observational astronomer, and we could track the status of the observations that will test the JWST results in real time.”

The finding supports the fact that the galaxies observed by Webb include some of the oldest galaxies known, demonstrating how powerful our tools now are for looking back to the early stages of the universe.

“These deep ALMA observations provide robust evidence of the existence of galaxies within the first few hundred million years after the Big Bang, and confirms the surprising results from the Webb observations,” said Jorge Zavala of the National Astronomical Observatory of Japan. “The work of JWST has only just begun, but we are already adjusting our models of how galaxies form in the early Universe to match these observations. The combined power of Webb and the radio telescope array ALMA give us the confidence to push our cosmic horizons ever closer to the dawn of the Universe.”

The research is published in the journal Monthly Notices of the Royal Astronomy Society.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more