Skip to main content

A galaxy with layers like an onion shines in Dark Energy Camera image

A new image taken by the Dark Energy Camera shows a “galactic onion,” a shell galaxy with multiple layers that are spread out over a distance of 150,000 light-years. At around twice the size of the Milky Way, the galaxy NGC 3923 is large, but even larger is a nearby galaxy cluster that has so much mass that it is bending space-time, making the light from distant galaxies behind it bend like a magnifying glass in a process called gravitational lensing.

The Dark Energy Camera is ground-based instrument located at the Víctor M. Blanco 4-meter Telescope in Chile and was originally built to observe many galaxies as part of a project called the Dark Energy Survey. Now, it is also used for other observations such as imaging dwarf galaxies, merging galaxies, and more.

The symmetrical, onion-like layers of shell galaxy NGC 3923 are showcased in this galaxy-rich image taken by the US Department of Energy’s (DOE) Dark Energy Camera mounted on the National Science Foundation’s (NSF) Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. A nearby, massive galaxy cluster is also captured exhibiting the phenomenon known as gravitational lensing.
The symmetrical, onion-like layers of shell galaxy NGC 3923 are showcased in this galaxy-rich image taken by the U.S. Department of Energy Dark Energy Camera mounted on the National Science Foundation’s (NSF) Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile. A nearby, massive galaxy cluster is also captured exhibiting the phenomenon known as gravitational lensing. DESI Legacy Imaging Surveys/LBNL/DOE & KPNO/CTIO/NOIRLab/NSF/AURA Image processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), M. Zamani (NSF’s NOIRLab), R. Colombari (NSF’s NOIRLab) & D. de Martin (NSF’s NOIRLab)

The main feature of this image is the shell galaxy, which is a type of elliptical galaxy in which the stars are not spread evenly, but are instead arranged into shell-like structures. Spiral galaxies like the Milky Way don’t have this arrangement of stars, but it is thought that around one-tenth of elliptical galaxies do, and that the structure is created when two galaxies merge and a larger galaxy absorbs a smaller companion.

Two galaxies merging was what happened here, as NOIRLab explains: “As they merged, the larger galaxy’s gravitational field slowly peeled off stars from the smaller galaxy’s disk. Those stars began to gradually mix with the larger galaxy’s outer halo, forming concentric bands, or shells. A simple analogy is adding a drop of food color to a bowl of batter that you’re slowly stirring. The drop gets stretched out in a spiral that remains visible for a long time before completely mixing.”

The other important feature of this image is harder to see, but is located at the top center. A massive galaxy cluster called PLCK G287.0+32.9 is bending space-time and warping the light coming from distant galaxies, making them appear stretched out.

To see the image in its full glory and to appreciate all the details, a large zoomable version of the image is available on the NOIRLab website.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble snaps an image of dark spokes in Saturn’s rings
This photo of Saturn was taken by NASA's Hubble Space Telescope on October 22, 2023, when the ringed planet was approximately 850 million miles from Earth. Hubble's ultra-sharp vision reveals a phenomenon called ring spokes. Saturn's spokes are transient features that rotate along with the rings. Their ghostly appearance only persists for two or three rotations around Saturn. During active periods, freshly-formed spokes continuously add to the pattern.

The Hubble Space Telescope is investigating something strange about the beautiful rings around Saturn. You might picture Saturn's rings as perfectly smooth, but in fact, they have some strange dark spots that appear intermittently. These features, called spokes, look like dusty blots spread over the rings and appear for just a few rotations before disappearing again, with some periods having much more spoke activity than others.

These spokes were first observed over 40 years ago by the Voyager 2 spacecraft, but they continue to be something of a mystery. They seem to be linked to seasons on the planet, which are seven years long, and to the planet's magnetic field. A newly released image taken by Hubble in October this year shows the spokes as dark patches on the rings, observed as part of a program called Hubble's Outer Planets Atmospheres Legacy (OPAL), which tracks them as they move.

Read more
Webb and Hubble work together to image the Christmas Tree Galaxy Cluster
This panchromatic view of galaxy cluster MACS0416 was created by combining infrared observations from NASA’s James Webb Space Telescope with visible-light data from NASA’s Hubble Space Telescope. To make the image, in general the shortest wavelengths of light were color-coded blue, the longest wavelengths red, and intermediate wavelengths green. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies that could be described as one of the most colorful views of the universe ever created.

Different telescopes work at different wavelengths, meaning they can observe different objects in the sky -- and when data from various telescopes is combined, it can make for stunning views that would be impossible to get from any one instrument. That's the case with a beautiful new image of a cluster of thousands of galaxies that combines data from both the Hubble Space Telescope and the James Webb Space Telescope to create a stunning and colorful view.

This panchromatic view of galaxy cluster MACS0416 was created by combining infrared observations from NASA’s James Webb Space Telescope with visible-light data from NASA’s Hubble Space Telescope. To make the image, the shortest wavelengths of light were color-coded blue, the longest wavelengths red, and intermediate wavelengths green. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies that could be described as one of the most colorful views of the universe ever created. NASA, ESA, CSA, STScI, Jose M. Diego (IFCA), Jordan C. J. D'Silva (UWA), Anton M. Koekemoer (STScI), Jake Summers (ASU), Rogier Windhorst (ASU), Haojing Yan (University of Missouri)

Read more
See the stunning first images taken by the dark matter-hunting Euclid telescope
The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars.

The European Space Agency (ESA) has released the first full-color images taken by Euclid, a space telescope that was launched earlier this year to probe the mysteries of dark matter and dark energy. Euclid will image a huge area of the sky to build up a 3D map of the universe, helping researchers to track the dark matter that is clustered around galaxies and the dark energy that counteracts gravity to push galaxies apart.

The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

Read more