Skip to main content

Astronomers make huge exoplanet discovery haul in record time

If we ever discover life in outer space, it may be found on an Earth-like planet orbiting a nearby star. Exoplanets have become a focus for many astronomers since they were first discovered three decades ago. But these distant planets aren’t just studied as potential alien home planets — they also help astronomers better understand the features of the universe. To date, some 3,796 have been identified after a recent haul added 80 planetary candidates to the list.

In a paper published online this week in The Astronomical Journal, an international group of scientists reported that dozens of planetary candidates have been identified by measuring light fluctuations using K2, the mission that followed up NASA’s Kepler Space Telescope.

Among the nearly 80 candidates is a planet that orbits the star HD 73344, which qualifies as the brightest host star ever identified by K2. According to data analyzed by the astronomers, the planetary candidate orbits HD 73344 every 15 days. By measuring the amount of light the planet blocks while passing in front of the star, astronomers estimate that the planet is two and a half times the size of Earth, with 10 times more mass. Temperature on the planet hovers around 2,000 degrees Fahrenheit, comparable to lava erupting from a volcano.

At about 114 light years from us, the planet is relatively close in cosmic terms. And though life as we know it couldn’t exist on its boiling surface, scientists believe the planet could be a good candidate to study exoplanet characteristics, such as atmospheric composition.

“We think it would probably be more like a smaller, hotter version of Uranus or Neptune,” said Ian Crossfield, an assistant professor of physics at  Massachusetts Institute of Technology, who co-led the study.

Eighty planetary candidates is an impressive haul in its own right, but the study is additionally notable for the speed it took to identify the candidates. By running raw data from the K2 mission through existing tools developed by researchers at MIT, the astronomers were able to sift through “lightcurves,” graphs that depict light intensity, from 50,000 stars. Where a typical analysis like this could take months or a year, the recent report was completed in a matter of weeks.

Crossfield referred to the recent study as a “dress rehearsal” for astronomers set to receive data from NASA’s Transiting Exoplanet Survey Satellite (TESS).

“When the TESS data come down, there’ll be a few months before all of the stars that TESS looked at for that month ‘set’ for the year,” Crossfield said. “If we get candidates out quickly to the community, everyone can start immediately observing systems discovered by TESS, and doing a lot of great planetary science. So this [analysis] was really a dress rehearsal for TESS.”

Editors' Recommendations

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Russian cosmonaut breaks record for time spent in space
Oleg Kononenko, prior to his latest launch to the International Space Station in September 2023.

Oleg Kononenko (center), prior to his latest launch to the International Space Station in September 2023. Alongside him are NASA astronaut Loral O'Hara and Roscosmos cosmonaut Nikolai Chub. Roscosmos/NASA

A Russian cosmonaut has just set a new record for the longest time spent in space.

Read more
Astronomers discover a super-Earth located in the habitable zone
This illustration shows one way that planet TOI-715 b, a super-Earth in the habitable zone around its star, might appear to a nearby observer.

Astronomers have discovered a type of exoplanet called a "super-Earth" located in the habitable zone of its small star, and it's right in our cosmic backyard, just 137 light-years away. The planet, named TOI-715 b, is intriguing to astronomers who are increasingly interested in the possibility of habitable planets orbiting stars quite different from our sun.

Although it might seem to make sense to look for potentially habitable planets when looking for Earth-like planets orbiting sun-like stars, those aren't the only targets that astronomers are interested in. One issue is that most discovered exoplanets are much larger than Earth, partly because it is so hard to detect smaller planets. Another issue is that the most common star in our galaxy by far is not a yellow dwarf star like our sun, but a smaller, dimmer, redder type called a red dwarf. When researchers discover rocky planets orbiting around red dwarfs, a few of which have been identified to date, that increases the pool of potentially habitable worlds that could be out there.

Read more
The 60 best space photos of all time from Nasa, Hubble, and more
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.

We're living through a golden age of space exploration, from rovers landing on Mars to astronauts living on board the International Space Station to the most complex and capable telescopes ever devised sending back stunning images of the cosmos. With technology like the high definition cameras on the Perseverance rover and the incredible sensitive infrared detectors on the James Webb Space Telescope, we're getting new views of the world beyond our own planet every day.

Some images of space stay entrenched in the public imagination, like the famous Pale blue Dot photos from 1990. It shows Earth as seen by the Voyager spacecraft just minutes before its camera was turned off. Traveling beyond the orbit of Pluto, the image shows the view when Voyager turned back around and viewed Earth -- the tiny, almost imperceptible dot seen against the emptiness of space.

Read more