Skip to main content

Intriguing exoplanet could be entirely covered in ocean

Astronomers have discovered an intriguing exoplanet that could be entirely covered in water. The potential ocean world is called TOI-1452 b, located around 100 light-years away in the constellation of Draco.

The planet was discovered by an international team using data from NASA’s Transiting Exoplanet Survey Satellite, or TESS, and is a type of planet called a super-Earth which is somewhat larger and heavier than Earth. It is in its host star’s habitable zone, meaning it is the right distance from the star for liquid water to exist on its surface.

Artistic rendition of the exoplanet TOI-1452 b, a small planet that may be entirely covered in a deep ocean.
Artistic rendition of the exoplanet TOI-1452 b, a small planet that may be entirely covered in a deep ocean. Benoit Gougeon, Université de Montréal

The clues that this could be an ocean world are related to the planet’s radius, mass, and density. Although Earth has 70% of its surface covered by ocean, this water makes up less than 1% of our planet’s mass. But the planet TOI-1452 b has a density that suggests much of its mass, up to 30%, could be made up of lighter components like water.

“TOI-1452 b is one of the best candidates for an ocean planet that we have found to date,” explained lead researcher Charles Cadieux in a statement. “Its radius and mass suggest a much lower density than what one would expect for a planet that is basically made up of metal and rock, like Earth.”

Artistic representation of the surface of TOI-1452 b, which could be an “ocean planet”, i.e. a planet entirely covered by a thick layer of liquid water.
Artistic representation of the surface of TOI-1452 b, which could be an “ocean planet”, i.e. a planet entirely covered by a thick layer of liquid water. Benoit Gougeon, Université de Montréal

This makes the planet potentially similar to some moons in our solar system like Jupiter’s moons Ganymede and Callisto, or Saturn’s moons Titan and Enceladus, which are thought to host liquid oceans. However, the oceans on these moons are hidden beneath thick crusts of ice because they are so far from the sun.

Researchers are keen to study TOI-1452 b in more depth to see if it really is covered in a deep ocean, or whether there is another explanation for its size and density like being a very large rock with no atmosphere. They are hoping to schedule further observations of the planet using the James Webb Space Telescope.

“Our observations with the Webb Telescope will be essential to better understanding TOI-1452 b,” said another of the researchers, René Doyon, who is also the ​​Principal Investigator of Webb’s NIRISS instrument. “As soon as we can, we will book time on the Webb to observe this strange and wonderful world.”

The research is published in The Astronomical Journal.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
First indications of a rare, rainbow ‘glory effect’ on hellish exoplanet
For the first time, potential signs of the rainbow-like ‘glory effect’ have been detected on a planet outside our Solar System. Glory are colourful concentric rings of light that occur only under peculiar conditions. Data from ESA’s sensitive Characterising ExOplanet Satellite, Cheops, along with several other ESA and NASA missions, suggest this delicate phenomenon is beaming straight at Earth from the hellish atmosphere of ultra-hot gas giant WASP-76b, 637 light-years away.

Just from looking at our own solar system, we can see that planets come in a wide variety of colors -- from the dusty red of Mars to the bright blues of Uranus and Neptune. Planets like Jupiter have beautiful bands of color caused by variations in the atmosphere, while it's hard to even see the surface of Venus because its atmosphere is so thick. But there are other variations in color which planets can display, like a stunning rainbow-hued set of circular rings called a glory.

Glories are observed on Earth, and have been seen just once on another planet, Venus. But now, researchers believe they may have identified a glory on a planet outside our solar system for the first time. The extreme exoplanet WASP-76b could be host to the first known extrasolar glory, observed by the European Space Agency (ESA)'s Characterising ExOplanet Satellite (Cheops).

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more