Skip to main content

See our galactic neighbors as you’ve never seen them before

Dust was long considered the bane of astronomers, blocking off light and hiding away objects they wanted to observe. But with the advent of infrared astronomy, researchers found that dust is not a dull curtain, but rather an active and essential ingredient for the way that galaxies evolve.

In recent decades astronomers have come to see dust as a source of scientific discovery and, as demonstrated by a set of images recently released by Hubble scientists, it can be strikingly beautiful as well.

The Large Magellanic Cloud seen here in a far-infrared and radio view.
The Large Magellanic Cloud (LMC) is a satellite of the Milky Way, containing about 30 billion stars. Seen here in a far-infrared and radio view, the LMC’s cool and warm dust are shown in green and blue, respectively, with hydrogen gas in red. ESA/NASA/JPL-Caltech/CSIRO/C. Clark (STScI)

Researchers have used data from four telescopes no longer operating — the European Space Agency’s Herschel Space Observatory and Planck observatory, and NASA’s the Infrared Astronomical Satellite and Cosmic Background Explorer — to create images of four nearby galaxies to the Milky Way. The images show the dust in and around these galaxies in all its glory, color-coded to show cool dust in green and warm dust in blue, with hydrogen gas in red.

The Andromeda galaxy, or M31, is shown here in far-infrared and radio wavelengths of light.
The Andromeda galaxy, or M31, is shown here in far-infrared and radio wavelengths of light. Some of the hydrogen gas (red) that traces the edge of Andromeda’s disc was pulled in from intergalactic space, and some was torn away from galaxies that merged with Andromeda far in the past. ESA/NASA/JPL-Caltech/GBT/WSRT/IRAM/C. Clark (STScI)

The four galaxies pictured are the Large and Small Magellanic Clouds (two dwarf galaxies orbiting the Milky Way), plus the nearby Andromeda and Triangulum galaxies. The images show how the density of dust varies within these galaxies, as it is thrown off by exploding stars and blown around by stellar winds.

The Small Magellanic Cloud.
The Small Magellanic Cloud is a satellite of the Milky Way, containing about 3 billion stars. This far-infrared and radio view of it shows the cool (green) and warm (blue) dust, as well as the hydrogen gas (red). ESA/NASA/JPL-Caltech/CSIRO/NANTEN2/C. Clark (STScI)

“These improved Herschel images show us that the dust ‘ecosystems’ in these galaxies are very dynamic,” said Christopher Clark of the Space Science Telescope Institute who led the work to create the new images.

For example, dust is crucial to the formation of new stars, so researchers can spot areas where stars are being born by looking for empty bubbles within the dust.

The Triangulum galaxy, or M33, is shown here in far-infrared and radio wavelengths of light.
The Triangulum galaxy, or M33, is shown here in far-infrared and radio wavelengths of light. Some of the hydrogen gas (red) that traces the edge of the Triangulum’s disc was pulled in from intergalactic space, and some was torn away from galaxies that merged with Triangulum far in the past. ESA/NASA/JPL-Caltech/GBT/VLA/IRAM/C. Clark (STScI)

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb discovers the most distant galaxy ever observed
JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang.

JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang. Credit: NASA, ESA, CSA, STScI, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), P. Cargile (CfA). NASA

Researchers using the James Webb Space Telescope have discovered the most distant known galaxy to date, one that is so far away that it existed just a few hundred million years after the Big Bang. Since Webb began its science operations in 2022, astronomers have used it to look for very distant, very ancient galaxies and have been surprised by what they found. Not only have they found many of these distant galaxies, but the galaxies are also brighter and more massive than they expected -- suggesting that galaxies evolved into large sizes faster than anyone imagined.

Read more
Two tiny NASA satellites are launching to study Earth’s poles
The first of two CubeSats for the PREFIRE mission sits on a launch pad in Māhia, New Zealand, shortly before launching on May 25, 2024 at 7:41 p.m. NZST (3:41 a.m. EDT).

A CubeSat satellite sits on a launch pad in Māhia, New Zealand, shortly before launching on May 25, 2024. Rocket Lab

This weekend will be a busy time for rocket launches. Not only will NASA be attempting the first crewed launch of the Boeing Starliner, which is currently scheduled for Saturday, June 1, following a series of delays, but there will also be the second of a two-part launch of a new mission called PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment).

Read more
Watch Starliner heading back to the launchpad at Kennedy
Boeing Space's Starliner spacecraft heading back to the launchpad.

Boeing Space's Starliner spacecraft heading back to the launchpad atop an Atlas V rocket. NASA/Boeing Space

In a big step toward its first crewed flight, Boeing Space’s Starliner spacecraft and United Launch Alliance’s Atlas V rocket were transported to the launchpad at the Kennedy Space Center in Florida on Thursday.

Read more