Skip to main content

How to spot a habitable exoplanet by investigating its core

UBCO’s Brendan Dyck is using his geology expertise about planet formation to help identify other planets that might support life.
UBCO’s Brendan Dyck is using his geology expertise about planet formation to help identify other planets that might support life. NASA/Goddard Space Flight Center

In the last decade, we’ve been able to peer out beyond the solar system and to discover planets in systems beyond our own, discovering over 4,000 exoplanets in total. The next challenge to understand these distant worlds is to learn about whether they might be habitable, as many will likely be outside the habitable zone in which liquid water could be present on their surfaces.

Now, new research aims to go beyond the concept of a habitable zone and to understand the habitability of exoplanets based on the geology of how planets are formed.

“We typically hope to find these planets in the so-called ‘goldilocks’ or habitable zone, where they are the right distance from their stars to support liquid water on their surfaces,” lead author Brendan Dyck, assistant professor of geology at the University of British Colombia, said in a statement.

But his research aims to go further. “Just because a rocky planet can have liquid water doesn’t mean it does,” he explained. “Take a look right in our own solar system. Mars is also within the habitable zone and although it once supported liquid water, it has long since dried up.”

A big aim for many exoplanet researchers is to find rocky planets similar in composition and size to Earth. “The discovery of any planet is pretty exciting, but almost everyone wants to know if there are smaller Earth-like planets with iron cores,” Dyck said.

To understand planets’ cores, the team looked for clues from planetary formation. Rocky Earth-like planets with iron cores typically have a similar proportion of iron to the star which they orbit, but how much of this iron is in the core versus in the mantle can vary. It is this core versus mantle issue which can determine the presence of water and whether a planet will have plate tectonics, which can be a key determinate of habitability.

“As the planet forms, those with a larger core will form thinner crusts, whereas those with smaller cores form thicker iron-rich crusts like Mars,” he explained. This knowledge of geology can be applied to planets outside our solar system to help narrow down potential candidates for habitable exoplanets.

“Our findings show that if we know the amount of iron present in a planet’s mantle, we can predict how thick its crust will be and, in turn, whether liquid water and an atmosphere may be present,” he said. “It’s a more precise way of identifying potential new Earth-like worlds than relying on their position in the habitable zone alone.”

The research is published in the Astrophysical Journal Letters.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
Astronomers discover extremely hot exoplanet with ‘lava hemisphere’
Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old. It's also the closest discovered Earth-sized planet this young, at about 400 million years old.

Astronomers have discovered an Earth-sized exoplanet with an unusually extreme climate where one half of the planet is thought to be covered in lava. The planet HD 63433 d is tidally locked, meaning one side of it always faces its star while the other half always faces out into space, creating a huge difference in temperatures between the planet's two faces.

Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old.  NASA/Ames/JPL-Caltech/T. Pyle

Read more
See the weather patterns on a wild, super hot exoplanet
This is an artist’s impression of the exoplanet WASP 121-b, also known as Tylos. The exoplanet’s appearance is based on Hubble data of the object. Using Hubble observations, another team of scientists had previously reported the detection of heavy metals such as magnesium and iron escaping from the upper atmosphere of the ultra-hot Jupiter exoplanet, marking it as the first of such detection. The exoplanet is orbiting dangerously close to its host star, roughly 2.6% of the distance between Earth and the Sun, placing it on the verge of being ripped apart by its host star's tidal forces. The powerful gravitational forces have altered the planet's shape.

When it comes to understanding exoplanets, or planets outside our solar system, the big challenge is in not only finding these planets, but also understanding what they are like. And one of the biggest factors that scientists are interested in is whether an exoplanet has an atmosphere and, if so, what it is composed of. But, just like with weather here on Earth, exoplanet atmospheres aren't static. So the Hubble Space Telescope was recently used for an intriguing observation -- comparing data from an exoplanet atmosphere that had previously been observed, to see how it changed over time.

Hubble looked at planet WASP-121 b, an extreme planet that is so close to its star that a year there lasts just 30 hours. Its surface temperatures are over 3,000 Kelvins, or 5,000 degrees Fahrenheit, which researchers predict would lead to some wild weather phenomena. As it is such an extreme planet, WASP-121 b is well-known and has been observed by Hubble several times over the years, beginning in 2016.

Read more