Skip to main content

This galaxy cluster is so massive it warps space-time and bends light

It’s hard to comprehend the scale of the universe. It’s difficult to imagine even the size of the entire solar system, let alone our galaxy. And our galaxy is just one among billions in the universe. In fact, galaxies don’t just exist alone, but often interact with each other — and often come together in vast groups called galaxy clusters.

This week’s image from the Hubble Space Telescope shows one such galaxy cluster named Abell 1351, located in the constellation of Ursa Major. Galaxy clusters are groups of thousands of galaxies held together by gravity, and their masses are measured on the scale of quadrillions of times the mass of the sun. This particular observation shows what kind of effects that much mass can have on space-time.

The massive galaxy cluster Abell 1351 is captured in this image by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. This galaxy cluster lies in the constellation Ursa Major in the northern hemisphere.
The massive galaxy cluster Abell 1351 is captured in this image by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. This galaxy cluster lies in the constellation Ursa Major in the northern hemisphere. ESA/Hubble & NASA, H. Ebeling Acknowledgement: L. Shatz

Across the image, you can see streaks of light which are pictures of distant galaxies. Because the mass of the galaxy cluster is so great, it warps space-time enough that light passing through it gets bent and spread out, like a magnifying glass. This is called gravitational lensing, and it allows researchers to see objects such as galaxies that are far further away than we could normally observe.

There are different degrees of gravitational lensing, depending on the mass of the object acting as a lens. If the lens is massive enough and the light source is close to it, it will bend light to such a degree that you might see multiple images of the same light source. That’s called strong gravitational lensing. There is also an effect called weak gravitational lensing, in which the lens is less massive or the light source is far away, which can stretch the light source and make it appear larger or of a different shape.

There’s also an effect called microlensing, which is used to detect exoplanets, in which light from a distant object (a star in this case) appears brighter because of the body in front of it (the exoplanet).

Both strong and weak microlensing are caused by Abell 1351, and the cluster is being studied to both determine its mass and in order to see distant galaxies.

“This observation is part of an astronomical album comprising snapshots of some of the most massive galaxy clusters,” Hubble scientists write. “This menagerie of massive clusters demonstrates interesting astrophysical phenomena such as strong gravitational lensing, as well as showcasing spectacular examples of violent galaxy evolution.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Private astronauts enjoy extra time aboard the space station
The Axiom-3 crew aboard the ISS.

The Ax-3 crew aboard the ISS. Axiom Space/NASA

Private astronauts who had been expecting to stay aboard the International Space Station (ISS) for two weeks will be staying a few extra days after their departure date was changed due to poor weather conditions at the landing site.

Read more
Russian cosmonaut breaks record for time spent in space
Oleg Kononenko, prior to his latest launch to the International Space Station in September 2023.

Oleg Kononenko (center), prior to his latest launch to the International Space Station in September 2023. Alongside him are NASA astronaut Loral O'Hara and Roscosmos cosmonaut Nikolai Chub. Roscosmos/NASA

A Russian cosmonaut has just set a new record for the longest time spent in space.

Read more
How to watch SpaceX launch Cygnus cargo ship to ISS for first time
A SpaceX Falcon 9 rocket launching from Cape Canaveral.

SpaceX is about to launch Northrop Grumman’s Cygnus cargo ship to the International Space Station (ISS) for the first time, and you can watch the event live online.

The 20th Commercial Resupply Services (NG-20) mission is set to get underway from the Kennedy Space Center in Florida on Tuesday, January 30. Scroll down for full details on how to watch.

Read more