Skip to main content

Hubble discovers over 1,000 new asteroids thanks to photobombing

The Hubble Space Telescope is most famous for taking images of far-off galaxies, but it is also useful for studying objects right here in our own solar system. Recently, researchers have gotten creative and found a way to use Hubble data to detect previously unknown asteroids that are mostly located in the main asteroid belt between Mars and Jupiter.

The researchers discovered an incredible 1,031 new asteroids, many of them small and difficult to detect with several hundred of them less than a kilometer in size. To identify the asteroids, the researchers combed through a total of 37,000 Hubble images taken over a 19-year time period, identifying the tell-tale trail of asteroids zipping past Hubble’s camera.

This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern.
This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern. NASA, ESA, P. G. Martín (Autonomous University of Madrid), J. DePasquale (STScI). Acknowledgment: A. Filippenko (University of California, Berkeley)

To work through so much data, the professional astronomers recruited citizen scientists to help sift through an archive of Hubble images and look for indications of asteroids as part of the Hubble Asteroid Hunter project. They also used machine learning to pick out the signs of an asteroid “photobombing” a Hubble image, by leaving a streak across an image as the asteroid passes by. That allowed them to find a surprisingly large number of objects.

“We are getting deeper into seeing the smaller population of main-belt asteroids. We were surprised to see such a large number of candidate objects,” said research lead author Pablo García Martín of the Autonomous University of Madrid, Spain, in a statement. “There was some hint that this population existed, but now we are confirming it with a random asteroid population sample obtained using the whole Hubble archive. This is important for providing insights into the evolutionary models of our solar system.”

By looking at the streak shape left in the images, some over multiple exposures, astronomers can calculate the orbits of the asteroids and how far away they are. Then by comparing the brightness of each object to its distance, they can work out its size.

“Asteroid positions change with time, and therefore you cannot find them just by entering coordinates, because at different times they might not be there,” said research co-author Bruno Merín, of the European Space Astronomy Centre in Madrid, Spain. “As astronomers we don’t have time to go looking through all the asteroid images. So we got the idea to collaborate with more than 10,000 citizen-science volunteers to peruse the huge Hubble archives.”

The research is published in the journal Astronomy and Astrophysics.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Asteroid impacted by spacecraft is reshaped like an M&M ‘with a bite taken out’
An illustration shows a spacecraft from NASA's DART mission approaching the asteroid it was intended to redirect.

In 2022, the world watched with fascination as NASA deliberately crashed a spacecraft into an asteroid in a test of what kind of defense options might be available to humanity if an incoming asteroid ever threatened Earth. Observers could tell very quickly that the test, called the Double Asteroid Redirection Test or DART, was successful in changing the asteroid's orbit. But now astronomers have learned more, finding that the impact may have reshaped the asteroid significantly.

The asteroid impacted, called Dimorphos, is very small at around 500 feet across, and the DART spacecraft crashed into it at a tremendous speed of nearly 4 miles per second. Researchers have now used computer modeling to see the effects of this impact, given the limited amount of information we have on the composition and uneven surface of Dimorphos.

Read more
Hubble spots a massive star forming amid clouds of dust and gas
This image from the NASA/ESA Hubble Space Telescope is a relatively close star-forming region known as IRAS 16562-3959.

A stunning new image from the Hubble Space Telescope shows the birth of a new, massive star at around 30 times the mass of our sun. Nestled with a nearby star-forming region called IRAS 16562-3959, the baby star is located within our galaxy and around 5,900 light-years from Earth.

You can see the sparkle of bright stars throughout the image, with the star-forming region visible as the orange-colored clouds of dust and gas stretching diagonally across the frame. These clouds are where dust and gas clump together to form knots, gradually attracting more dust and gas, growing over time to become protostars.

Read more
NASA has collected a whopping 121 grams of sample from asteroid Bennu
A view of eight sample trays containing the final material from asteroid Bennu. The dust and rocks were poured into the trays from the top plate of the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) head. 51.2 grams were collected from this pour, bringing the final mass of asteroid sample to 121.6 grams.

When the OSIRIS-REx dropped a capsule in the Utah desert last year, it made headlines around the globe for returning NASA's first sample of an asteroid to Earth. Scientists were eager to get their hands on the sample of asteroid Bennu to learn about the early formation of the solar system, but actually getting at the sample proved to be rather trickier than imagined.

Scientists were able to extract 70 grams of material from the sample canister relatively easily, making it by far the largest asteroid sample ever brought to Earth, but two troublesome fasteners made it difficult to extract the rest of the sample. The team knew it had plenty more sample inside, but it had to be patient as special new tools were constructed that could undo the fasteners without losing a single gram of the precious sample.

Read more