Skip to main content

Hubble measures the mass of a lonely dead star for the first time

In billions of years’ time, after our sun has burned through all of its fuel and puffed up to be a red giant, it will eventually shrink and cool until all that remains is the dense core of the former star, called a white dwarf. This is what will eventually happen to most stars, so white dwarfs are common in the universe. But there is much we still have to learn about these core remnants, and recent research using the Hubble Space Telescope has measured the mass of a lone white dwarf for the first time.

Previously, the mass of white dwarfs was measured when they were a part of a binary. When two stars orbit each other, astronomers can figure out their masses. However, there are also many single white dwarfs out there and it was difficult to work out their mass.

A single bright blue star dominates the scene against a dark background with many small stars visible in the distance.
Hubble has used microlensing to measure the mass of a white dwarf star. The dwarf, called LAWD 37, is a burned-out star in the center of this NASA/ESA Hubble Space Telescope image. Though its nuclear fusion furnace has shut down, trapped heat is sizzling on the surface at roughly 100 000 degrees Celsius, causing the stellar remnant to glow fiercely. NASA, ESA, P. McGill (Univ. of California, Santa Cruz and University of Cambridge), K. Sahu (STScI), J. Depasquale (STScI)

In order to measure the mass of a white dwarf called LAWD 37, astronomers took advantage of a phenomenon called gravitational microlensing. This is where the white dwarf passed in front of a background star, and the background star’s light was temporarily bent by the white dwarf’s gravity. The amount of bending could be used to work out the white dwarf’s mass.

“These events are rare, and the effects are tiny,” said the lead author of the research, Peter McGill of the University of California, Santa Cruz. “For instance, the size of our measured offset is like measuring the length of a car on the Moon as seen from Earth.”

The researchers were able to determine that LAWD 37 is 56% the mass of our sun, which is comparable to theoretical predictions of white dwarf mass. Having such an accurate measurement of its mass can also help researchers understand more about the structure and composition of these objects.

“The precision of LAWD 37’s mass measurement allows us to test the mass-radius relationship for white dwarfs,” said McGill. “This means testing the theory of degenerate matter (a gas so super-compressed under gravity that it behaves more like solid matter) under the extreme conditions inside this dead star.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble images the spooky Spider Galaxy
This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829.

This week's image from the Hubble Space Telescope shows an irregular galaxy, the spindly arms and clawed shape of which has led to it being named the Spider Galaxy. Located 30 million light-years away, the galaxy also known as UGC 5829 is an irregular galaxy that lacks the clear, orderly arms seen in spiral galaxies like the Milky Way.

This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829. ESA/Hubble & NASA, R. Tully, M. Messa

Read more
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
U.S. spacecraft lands on the moon for the first time in over 50 years
Intuitive Machines' Odysseus lander heads to the moon.

The U.S. company Intuitive Machines made a historic landing on the moon today. Intuitive Machines' Odysseus lander, launched earlier this month, touched down on the moon's surface at 6:23 p.m. ET, marking the U.S.'s first lunar landing since Apollo 17 in 1972 and the first landing on the moon by a commercial entity.

The Odysseus lander is part of NASA's Commercial Lunar Payload Services (CLPS) program, which provides contracts to companies for lunar services, and it carries a number of NASA scientific instruments. It has landed on the moon's south pole, which is an area of particular scientific interest as it hosts water ice and is the region where NASA plans to land astronauts under its Artemis program.

Read more