Skip to main content

James Webb gets most detailed look yet at an exoplanet’s atmosphere

One of the big advances promised by the James Webb Space Telescope is the ability to investigate exoplanets in greater detail than ever before. Webb has already imaged its first exoplanet and made the first detection of carbon dioxide in an exoplanet atmosphere, but now astronomers have used the telescope to get the most in-depth look yet at the atmosphere of planet WASP-39 b.

Webb uses instruments called spectrometers which break light down into different wavelengths to see which ones have been absorbed by various molecules in an atmosphere. This allows researchers to see spectra of the planet’s atmosphere, telling them what elements are present, which the researchers describe as a “game changer” for the study of exoplanets.

Artist's illustration of WASP-39b displays newly detected patches of clouds scattered across the planet.
New observations of WASP-39b with the JWST have provided a clearer picture of the exoplanet, showing the presence of sodium, potassium, water, carbon dioxide, carbon monoxide, and sulfur dioxide in the planet’s atmosphere. This artist’s illustration also displays newly detected patches of clouds scattered across the planet. Melissa Weiss/Center for Astrophysics | Harvard & Smithsonian

This planet is very hot, orbiting its host star every four days. In the atmosphere, researchers found water and confirmed the previous finding of carbon dioxide, but most importantly they found sulfur dioxide for the first time. This is created by light from the star interacting with the atmosphere and creating new molecules, and this is the first time that this photochemistry has been observed on an exoplanet.

Learning about an exoplanet’s atmosphere is important not only for understanding the planet as it is now but also for understanding how it formed in the past. ‘‘The moment I first saw the results of my analysis was probably the most exciting moment of my career to date,’’ said one of the researchers, Dominique Petit dit de la Roche, in a statement. ‘‘The chemical inventory of WASP-39b suggests that the planet was assembled by a succession of mergers with smaller bodies, and that its formation originally took place far from the central star.”

The research is early release, meaning it has not yet been published in an academic journal. It is presented in five papers, three of which are accepted and two of which are under review for the journal Nature.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more