Skip to main content

James Webb Space Telescope completes final testing ahead of launch

Finally, the big day approaches: The James Webb Space Telescope has completed its final tests and is now being prepared for its journey to its launch site. The next-generation telescope will be the successor to the venerable old Hubble Space Telescope, as well as taking over duties from the now-retired Spitzer Space Telescope.

The final round of testing includes a series of tests to ensure that the telescope will operate in space as planned. This is complex for several reasons — firstly, that the technology is cutting-edge and has to survive the extreme conditions of launch, and secondly, that the telescope needs to be folded up to fit into a rocket for launch and then unfurl itself once it is in orbit.

The James Webb telescope fully assembled and folded as it will be for launch.
Fully assembled and fully tested, the NASA/ESA/CSA James Webb Space Telescope has completed its primary testing regimen and is soon preparing for shipment to its launch site at Europe’s Spaceport in French Guiana. In this photo, Webb is folded as it will be for launch. NASA/Chris Gunn

With the tests complete and engineers confident that Webb is ready for launch, it will now be packed up and shipped to its launch site in Kourou, French Guiana.

“NASA’s James Webb Space Telescope has reached a major turning point on its path toward launch with the completion of final observatory integration and testing,” said Gregory L. Robinson, Webb’s program director in a statement. “We have a tremendously dedicated workforce who brought us to the finish line, and we are very excited to see that Webb is ready for launch and will soon be on that science journey.”

With its more powerful hardware, Webb will be able to collect more data and do new science compared to the older Hubble. For example, it will be able to see whether a distant exoplanet has an atmosphere or not and even what that atmosphere is composed of — something which is very difficult to do with currently available telescopes. The bodies organizing the launch of Webb, NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA), have already laid out plans for what Webb will study in its first year.

For the team who have worked on Webb so far, the launch date, which is set for late November or early December this year, will be a major milestone both personally and professionally. “To me, launching Webb will be a significant life event – I’ll be elated of course when this is successful, but it will also be a time of deep personal introspection. Twenty years of my life will all come down to that moment,” said Mark Voyton, Webb observatory integration and test manager at NASA’s Goddard Space Flight Center.

“We’ve come a long way and worked through so much together to prepare our observatory for flight. The telescope’s journey is only just beginning, but for those of us on the ground who built it, our time will soon come to an end, and we will have our opportunity to rest, knowing we put everything on the line to make sure our observatory works. The bonds we formed with each other along the way will last far into the future.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more
Watch SpaceX fire Starship’s Raptor engines ahead of 4th test flight
The Starship spacecraft during an engine test.

SpaceX performed a full-duration static fire of all six Raptor engines on its Starship spacecraft on Monday, and shared a video of the dramatic test on social media.

https://twitter.com/SpaceX/status/1772372482214801754

Read more
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more