Skip to main content

James Webb is ready to settle into its new home: Lagrange Point L2

The James Webb Space Telescope has been traveling through space since its launch on December 25, 2021, and will soon face the next crucial step in its mission, performing an orbital burn to insert itself into an orbit around the sun.

Webb is set to arrive at its new home on Monday: A location almost 1 million miles away called L2, or the second Sun-Earth Lagrange point. These points are places where the gravities of the sun and the Earth interact so that a small body like a spacecraft will stay in place as it moves with them. There are five of these Lagrange points, called L1 through L5, in different locations relative to the sun and the Earth. But not all of them are suitable to use as orbit.

“While all Lagrange points are gravitational balance points, not all are completely stable,” NASA representative Alise Fisher writes in an update. “L1, L2, and L3 are ‘meta-stable’ locations with saddle-shaped gravity gradients, like a point on the middle of a ridgeline between two slightly higher peaks wherein it is the low, stable point between the two peaks, but it is still a high, unstable point relative to the valleys on either side of the ridge. L4 and L5 are stable in that each location is like a shallow depression or bowl atop the middle of a long, tall ridge or hill.”

The advantage of using the L2 location is in the way it allows the observatory to stay in the shade. The light and the heat from direct sun would cause many problems for the delicate instruments on board Webb, so the best solution is to keep them in the shade. By positioning Webb at the L2 orbit, it ensures that one side of it always faces the sun, with its giant sunshield to protect it, while the other side faces out into the cool of space. And because the observatory is moving around the sun, it can capture every piece of the sky as it travels.

The gravitational properties of L2 also make it easier for a craft to maintain an orbit, plus it has advantages for communications using NASA’s Deep Space Network. Other observatories use the L2 orbit for the same reasons, including NASA’s Wilkinson Microwave Anisotropy Probe and the European Space Agency’s Herschel Space Observatory and Planck satellite.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb snaps a stunning stellar nursery in a nearby satellite galaxy
This image from the NASA/ESA/CSA James Webb Space Telescope features an H II region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. This nebula, known as N79, is a region of interstellar atomic hydrogen that is ionised, captured here by Webb’s Mid-InfraRed Instrument (MIRI).

A stunning new image from the James Webb Space Telescope shows a star-forming region in the nearby galaxy of the Large Magellanic Cloud. Our Milky Way galaxy has a number of satellite galaxies, which are smaller galaxies gravitationally bound to our own, the largest of which is the Large Magellanic Cloud or LMC.

The image was taken using Webb's Mid-Infrared Instrument or MIRI, which looks at slightly longer wavelengths than its other three instruments which operate in the near-infrared. That means MIRI is well suited to study things like the warm dust and gas found in this region in a nebula called N79.

Read more
James Webb Space Telescope celebrated on new stamps
Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024.

Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024. USPS

Beautiful images captured by the James Webb Space Telescope have landed on a new set of stamps issued this week by the U.S. Postal Service (USPS).

Read more
James Webb captures a unique view of Uranus’s ring system
This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope shows the planet and its rings in new clarity. The Webb image exquisitely captures Uranus’s seasonal north polar cap, including the bright, white, inner cap and the dark lane in the bottom of the polar cap. Uranus’ dim inner and outer rings are also visible in this image, including the elusive Zeta ring—the extremely faint and diffuse ring closest to the planet.

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more