Skip to main content

James Webb’s sunshield extended to its full 47-foot width

Following a successful launch on Christmas day, the James Webb Space Telescope is currently heading through space, having traveled almost 500,000 miles from Earth. It is just over halfway to its eventual destination: The L2 orbit, called a Lagrange point, where it will move around the sun in a complex path. As James Webb travels it is slowly unfolding its various hardware which had to be folded up origami-style to fit into the Ariane 5 rocket which launched it.

The telescope is currently in the process of deploying its tennis court-sized sunshield — a complex operation of many steps which began earlier this week and is expected to take four to five days. This started with the deployment of structures called Pallet Structures, which hold the sunshield itself plus components like cables and pulleys. With the forward and aft pallet structures in place, the next step was deploying the Deployable Tower Assembly, a structure that creates space between the spacecraft and the telescope to make space for the sunshield. This deployment took place on Wednesday, December 29.

With that done, over Thursday and Friday this week the team deployment the aft moment flap to help maintain the telescope’s orientation once it is in orbit, and released the sunshield covers which protected the thin sunshield during launch.

The latest update from NASA is that James Webb has extended its two sunshield mid-booms. These “arms” extend to the left and right of the telescope, pulling the thin membrane of the sunshield with them until it spanned the full 47 feet of its width. Their deployment means that all of the 107 release devices for the various parts of the sunshield deployment have now been released.

“The mid-booms are the sunshield’s workhorse and do the heavy lifting to unfold and pull the membranes into that now-iconic shape,” said Keith Parrish, Webb observatory manager at NASA’s Goddard Space Flight Center, in a blog post.

The deployment of the mid-booms took a little longer than expected as the team paused to assess a possible issue with the rolling up of the sunshield cover. The switches on the cover seemed not to have activated, but other sensors showed that the cover had indeed rolled up correctly. They decided to go ahead and the deployment was successful.

“Today is an example of why we continue to say that we don’t think our deployment schedule might change, but that we expect it to change,” Parrish said. “The team did what we had rehearsed for this kind of situation — stop, assess, and move forward methodically with a plan. We still have a long way to go with this whole deployment process.”

The next step is for the sunshield to be tensioned, in which each of its five layers will be stretched into place, which is expected to happen over the next few days.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more