Skip to main content

Three of James Webb’s four instruments are now aligned

The long process of getting the James Webb Space Telescope ready to begin collecting science data continues, and the Webb team has met another goal with the alignment of three out of its four instruments. The alignment process is a set of careful very small adjustments to each instrument to make sure they are in exactly the right location to receive light from the telescope’s large primary mirror. A few weeks ago the telescope’s mirrors were aligned with its main camera, called NIRCam, and now the telescope’s other instruments are being similarly adjusted.

Webb’s three near-infrared instruments (the Near-Infrared Slitless Spectrograph or NIRISS, the Near-Infrared Spectrometer or NIRSpec, and the Near-Infrared Camera or NIRCam) and its guidance sensor (the Fine Guidance Sensor or FGS) are now all aligned to its mirrors, leaving just the one mid-infrared instrument to go. The mid-infrared instrument (MIRI) takes longer to align because it uses a different type of sensor, which have to be cooled to an extremely low temperature of just 7 degrees kelvin. MIRI is still in the process of being cooled down to its operating temperature, and once it reaches this milestone then it too can be aligned.

The team had planned to make adjustments to the telescope’s secondary mirror — a smaller round mirror on the end of a boom arm — during the alignment process for the first three instruments, called phase six. However, it turned out that their alignments were so accurate that this wasn’t necessary, so they will wait until MIRI is fully cooled before making any final tweaks to the secondary mirror, in phase seven.

“As a general rule, the commissioning process starts with coarse corrections and then moves into fine corrections. The early secondary mirror coarse corrections, however, were so successful that the fine corrections in the first iteration of Phase Six were unnecessary,” said Chanda Walker, Webb wavefront sensing and control scientist at Ball Aerospace, in a NASA blog post. “This accomplishment was due to many years of planning and great teamwork among the wavefront sensing team.”

Once MIRI is cooled and all four instruments are aligned, there will be a second multi-instrument alignment phase to make any final small tweaks or adjustments. With alignment complete, the team will be able to move on to calibrating the instruments, getting them ready to begin science operations this summer.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more