Skip to main content

James Webb Telescope catches a glimpse of young version of the Milky Way

Data from the James Webb Space Telescope has given a glimpse into what our galaxy was like in its formative years. Webb observed a galaxy called The Sparkler, which is analogous to what the Milky Way would have been like when it was young, when it had less mass and only a handful of globular clusters.

This image shows an artist impression of our Milky Way galaxy in its youth. Five small satellite galaxies, of various types and sizes, are in the process of being accreted into the Milky Way. These satellite galaxies also contribute globular star clusters to the larger galaxy. The Sparkler galaxy provides a snap-shot of an infant Milky Way as it accretes mass over cosmic time.
This image shows an artist impression of our Milky Way galaxy in its youth. Five small satellite galaxies, of various types and sizes, are in the process of being accreted into the Milky Way. These satellite galaxies also contribute globular star clusters to the larger galaxy. The Sparkler Galaxy provides a snapshot of an infant Milky Way as it accretes mass over cosmic time. James Josephides, Swinburne University.

Our galaxy is one of the older ones in the universe, as it is around 13.8 billion years old. Over its life, the Milky Way has grown as more and more stars formed, until it reached its current mass of around 1.5 trillion times the mass of the sun. It also now hosts around 200 globular clusters, which are dense clusters of stars.

By contrast, the Sparkler galaxy has just 3% the mass of the Milky Way and only 24 globular clusters. But this small galaxy is growing as it gobbles up nearby satellite galaxies and globular clusters, and it is predicted that it will eventually grow to match the mass of the Milky Way.

“We appear to be witnessing, firsthand, the assembly of this galaxy as it builds up its mass – in the form of a dwarf galaxy and several globular clusters,” said lead author Duncan Forbes of Australia’s Swinburne University in a statement. “We are excited by this unique opportunity to study both the formation of globular clusters, and an infant Milky Way, at a time when the Universe was only 1/3 of its present age.”

The Sparkler Galaxy is extremely far away, so its light takes billions of years to reach us. Researchers were able to get a better look at it using a technique called gravitational lensing, which means they are seeing it as it was around 9 billion years ago.

This ability to see a galaxy growing just 4 billion years after the Big Bang can help us understand the formation of globular clusters, according to co-author Aaron Romanowsky: “The origin of globular clusters is a long-standing mystery, and we are thrilled that JWST can look back in time to see them in their youth.”

The research is published in the Monthly Notices of the Royal Astronomical Society.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more