Skip to main content

James Webb Space Telescope may have spotted its first supernova

The James Webb firsts keep coming, with the new space telescope having recently spotted what could be the most distant galaxy ever observed. Now, it may have spotted its first supernova.

The potential supernova spotted by the James Webb Space Telescope.
The potential supernova spotted by the James Webb Space Telescope. pace Telescope Science Institute

As reported by Inverse, researchers using Webb believe they have observed a supernova using the NIRCam instrument. They compared the Webb data to data collected using Hubble and found a bright object which could be a star that has just gone supernova.

A supernova occurs when a massive star runs out of fuel and comes to the end of its life. As the star collapses, it throws off much of its material in an enormous explosion which gives out large amounts of light. This light is so bright it can be spotted from great distances away. Webb spotted one such bright flash in the galaxy SDSS.J141930.11+5251593. The telescope made two observations of the galaxy five days apart, and in the second observation, the flash was less bright, suggesting it is dimming over time.

“We would need more time series data to make a determination, but the data we do have does match that of a supernova, so it’s a very good candidate,” lead author Mike Engesser of the Space Telescope Science Institute said to Inverse.

This finding is rather surprising, even with Webb’s extreme sensitivity. Because supernovae are transient events, meaning they don’t last for long, you have to get lucky to observe one when it happens. Although technically, the supernova happened billions of years ago, we are only just seeing it now because it takes time for the light to travel to us from the distant galaxy.

Webb wasn’t designed to detect supernovae, but researchers are making the most of the data collected so far and are finding surprising uses for it. The advantage of looking at this kind of target with Webb is that it will be able to observe the area around the supernova to see its effects and the aftermath of such a large explosion.
Understanding more about supernovae is important not only for understanding the life cycles of stars, but also for measuring the expansion of the universe. A class of supernovae called Type 1a are used as “mile markers” for measuring distances because they have consistent levels of brightness and can be seen from great distances.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more
James Webb snaps a stunning stellar nursery in a nearby satellite galaxy
This image from the NASA/ESA/CSA James Webb Space Telescope features an H II region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. This nebula, known as N79, is a region of interstellar atomic hydrogen that is ionised, captured here by Webb’s Mid-InfraRed Instrument (MIRI).

A stunning new image from the James Webb Space Telescope shows a star-forming region in the nearby galaxy of the Large Magellanic Cloud. Our Milky Way galaxy has a number of satellite galaxies, which are smaller galaxies gravitationally bound to our own, the largest of which is the Large Magellanic Cloud or LMC.

The image was taken using Webb's Mid-Infrared Instrument or MIRI, which looks at slightly longer wavelengths than its other three instruments which operate in the near-infrared. That means MIRI is well suited to study things like the warm dust and gas found in this region in a nebula called N79.

Read more
James Webb Space Telescope celebrated on new stamps
Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024.

Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024. USPS

Beautiful images captured by the James Webb Space Telescope have landed on a new set of stamps issued this week by the U.S. Postal Service (USPS).

Read more