Skip to main content

Juno spacecraft peers into the strange atmosphere of Jupiter

Cyclones at Jupiter's South Pole

Jupiter may be renowned as our solar system’s most beautiful planet, but there are still plenty of things we don’t understand about what makes this stunning place tick. One long-standing mystery is about the temperature of its atmosphere, which turns out to be much denser and hotter than was expected in certain places.

Now, data from NASA’s Juno probe has been used to uncover more information about how atmospheric hot spots spread and interact with the rest of the atmosphere.

“Giant planets have deep atmospheres without a solid or liquid base like Earth,” explained Scott Bolton, principal investigator of Juno at the Southwest Research Institute in San Antonio, in a statement. “To better understand what is happening deep into one of these worlds, you need to look below the cloud layer. Juno, which recently completed its 29th close-up science pass of Jupiter, does just that. The spacecraft’s observations are shedding light on old mysteries and posing new questions — not only about Jupiter, but about all gas giant worlds.”

The data suggests that there are hot spot regions in the atmosphere, but that these are not small, isolated pockets as previously thought. Instead, they are “windows” peeking into large swaths of the atmosphere that are hotter and drier than other areas, like one such dry area which seems to cover the entire northern equatorial belt of the planet. These spots are associated with breaks in the clouds which allow researchers to peer into the deeper layers of the atmosphere below.

This illustration uses data obtained by NASA's Juno mission to depict high-altitude electrical storms on Jupiter
This illustration uses data obtained by NASA’s Juno mission to depict high-altitude electrical storms on Jupiter. Juno’s sensitive Stellar Reference Unit camera detected unusual lightning flashes on Jupiter’s dark side during the spacecraft’s close flybys of the planet. NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Heidi N. Becker/Koji Kuramura

It is also these hot regions that may power the exotic lightning and slushy mushballs found in Jupiter’s atmosphere.

“High up in the atmosphere, where shallow lightning is seen, water and ammonia are combined and become invisible to Juno’s microwave instrument. This is where a special kind of hailstone that we call ‘mushballs’ are forming,” said Tristan Guillot, a Juno co-investigator at the Université Côte d’Azur in Nice, France, in the statement. “These mushballs get heavy and fall deep into the atmosphere, creating a large region that is depleted of both ammonia and water. Once the mushballs melt and evaporate, the ammonia and water change back to a gaseous state and are visible to Juno again.”

The Juno mission will continue to orbit Jupiter for a planned 37 orbits of the planet, collecting more data as it goes. It can help peel back the layers of this extraordinary place to learn more about its complex atmosphere and what lies beneath.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA addresses the crack in the hatch of the Crew-8 spacecraft
NASA’s SpaceX Crew-8 mission launches from Kennedy Space Center at 10:53 p.m. EST on Sunday, March 3, 2024.

NASA and SpaceX have sent off the latest batch of astronauts to visit the International Space Station, with the launch of the Crew-8 mission late last night. The SpaceX Dragon spacecraft launched from Launch Complex 39A at NASA’s Kennedy Space Center in Florida just before 11 p.m. ET on Sunday, March 3, but there was a risk during that the launch might have been cancelled due to a crack discovered in the hatch seal of the spacecraft around 30 minutes before liftoff.

This morning, NASA shared further details about the crack and why they were confident in letting the launch go ahead.

Read more
Asteroid impacted by spacecraft is reshaped like an M&M ‘with a bite taken out’
An illustration shows a spacecraft from NASA's DART mission approaching the asteroid it was intended to redirect.

In 2022, the world watched with fascination as NASA deliberately crashed a spacecraft into an asteroid in a test of what kind of defense options might be available to humanity if an incoming asteroid ever threatened Earth. Observers could tell very quickly that the test, called the Double Asteroid Redirection Test or DART, was successful in changing the asteroid's orbit. But now astronomers have learned more, finding that the impact may have reshaped the asteroid significantly.

The asteroid impacted, called Dimorphos, is very small at around 500 feet across, and the DART spacecraft crashed into it at a tremendous speed of nearly 4 miles per second. Researchers have now used computer modeling to see the effects of this impact, given the limited amount of information we have on the composition and uneven surface of Dimorphos.

Read more
NASA launches PACE satellite to observe Earth’s oceans and atmosphere
NASA’s Plankton, Aerosol, Climate, ocean Ecosystem (PACE) satellite launched aboard a SpaceX Falcon 9 rocket at 1:33 a.m. EST, Feb. 8, 2024, from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. From its orbit hundreds of miles above Earth, PACE will study microscopic life in the oceans and microscopic particles in the atmosphere to investigate key mysteries of our planet’s interconnected systems.

NASA has launched its latest Earth-monitoring mission, a satellite that studies the atmosphere and the oceans and their relationship to climate change. The Plankton, Aerosol, Climate, ocean Ecosystem (PACE) mission launched at 1:33 a.m. ET on Thursday, February 8, from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.

NASA’s Plankton, Aerosol, Climate, ocean Ecosystem (PACE) satellite launched aboard a SpaceX Falcon 9 rocket at 1:33 a.m. ET, February 8, 2024, from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. NASA

Read more