Skip to main content

See how volcanoes and tectonic activity shaped the Martian surface

Rover missions allow us to explore Mars from close up, but we can also gather a great deal of information about the planet using orbiting spacecraft which can capture images of the planet as they move around it. The European Space Agency (ESA)’s Mars Express orbiter has been in orbit around the planet since 2003, collecting information using tools like high-definition cameras, radar sounding, and atmospheric analysis.

Now, the orbiter has captured an image of a part of the Martian surface with interesting geology, showing deep valleys and tall ridges formed by activity beneath the planet’s surface stretching and tearing the crust above it.

Faults and scars near Tharsis province on Mars
Faults and scars near Tharsis province on Mars ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO

The orbiter captured this image of the Martian surface in the volcanic Tharsis province or Tharsis rise, close to the planet’s equator. It is part of the boundary region where the largely smooth and flat Northern hemisphere meets the mountainous and cratered Southern hemisphere.

The lines you can see across the image consist of two types of feature: Grabens and horsts, similar to ridges and valleys in that some areas protrude up above the surface and some sink down below. The structures are several kilometers wide and long, and are a few hundred meters deep.

You can also see that most of the structures run parallel to each other, but there are a few scratches running perpendicular to the others. These are caused by volcanic and tectonic activity in the Tharsis province, which hosts some of the largest volcanoes in the solar system. As the activity beneath the surface increased, it stretched the crust above it, creating the ridges. When the direction of the stress changed, it caused the perpendicular cracks to appear.

Topographic view of Tempe Fossae on Mars
Topographic view of Tempe Fossae on Mars ESA/DLR/FU Berlin, CC BY-SA 3.0 IGO

The ESA also produced this color-coded topographic view of the same region, with points of high altitude shown in red and yellow and points of low altitude shown in green and blue. You can see that on the top right of the image, it is considerably lower and flatter than the left side. This smoothness was caused by the flow of lava over the surface long ago, filling in depressions and leaving a smoother exterior.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See Ingenuity helicopter take to the air in video captured by Perseverance rover
NASA's Perseverance Mars rover captured this video of the Ingenuity Mars Helicopter's 54th flight on Aug. 3, 2023. After performing a preflight "wiggle check" with its rotors, the helicopter takes off, hovers at an altitude of 16 feet (5 meters), and rotates to the left, before touching back down. The mission conducted the short pop-up flight to check Ingenuity's navigation system.

NASA has released a video taken by the Perseverance rover on Mars that shows its companion, the helicopter Ingenuity, in flight. Ingenuity performed a short flight into the air and back down to the martian surface on August 3, and the rover was near enough to capture footage of the flight using its Mastcam-Z imager.

NASA's Perseverance Mars rover captured this video of the Ingenuity Mars Helicopter's 54th flight on August 3, 2023. After performing a preflight "wiggle check" with its rotors, the helicopter takes off, hovers at an altitude of 16 feet (5 meters), and rotates to the left, before touching back down. The mission conducted the short pop-up flight to check Ingenuity's navigation system. NASA/JPL-Caltech/ASU/MSSS

Read more
See how James Webb instruments work together to create stunning views of space
The irregular galaxy NGC 6822.

A series of new images from the James Webb Space Telescope shows the dusty, irregular galaxy NGC 6822 -- and the different views captured by various Webb instruments.

Located relatively close by at 1.5 million light-years from Earth, this galaxy is notable for its low metallicity. Confusingly, when astronomers say metallicity they do not mean the amount of metals present in a galaxy, but rather the amount of all heavy elements -- i.e., everything which isn't hydrogen or helium. This factor is important because the very earliest galaxies in the universe were made up almost entirely of hydrogen and helium, meaning they had low metallicity, and the heavier elements were created over time in the heart of stars and were then distributed through the universe when some of those stars went supernova.

Read more
See seasonal changes on Mars in two stunning images from MAVEN
mars maven ultraviolet seasons orbit16863 apo ladfit localff png

The planets in our solar system experience seasons because of the way that they are tilted in their orbits, so one hemisphere is facing the sun more often at some times of year than others. However, there's another factor which also affects weather and conditions on some planets, which is their position in their orbit around the sun. Earth has a relatively circular orbit, so the differences caused by it being slightly closer or further from the sun at different points are minimal. But Mars's orbit is much more eccentric or oval-shaped than Earth's, meaning conditions differ based on when the planet is closer to the sun.

That effect is illustrated in two images of Mars recently released by NASA, which show the planet at its closest and furthest point from the sun. Taken by a Mars orbiter called MAVEN, or Mars Atmosphere and Volatile EvolutioN, the images were taken six months apart in July 2022 and January 2023 respectively, showing how the environment of the planet changes with both season and the planet's orbit.

Read more