Skip to main content

NASA is testing out a new laser communications system this summer

Illustration of the U.S. Department of Defense's Space Test Program Satellite-6 (STPSat-6) with the Laser Communications Relay Demonstration (LCRD) payload communicating data over infrared links.
Illustration of the U.S. Department of Defense’s Space Test Program Satellite-6 (STPSat-6) with the Laser Communications Relay Demonstration (LCRD) payload communicating data over infrared links. NASA

As the instruments we send into space get increasingly complex and are able to collect larger amounts of data, we need a more efficient way to send that data back to Earth. The current space communication system uses radio-based communications, with agencies like NASA gradually moving to higher and higher frequencies to squeeze more data into a transmission. But for the next generation of space instrument, we’ll need a communication system that can handle even more data, and that’s where lasers come in.

Laser communications, also known as optical communications, allows instruments to send larger amounts of data like 4K videos or months of scientific analysis back to Earth. It could increase the amount of data that can be be sent by between 10 and 100 times compared to current systems. To illustrate what that means, NASA explains: “It would take roughly nine weeks to transmit a complete map of Mars back to Earth with current radio frequency systems. With lasers, it would take about nine days.”

NASA recently announced it will be launching a demonstration of this laser communications technology later this summer, in a mission called the Laser Communications Relay Demonstration (LCRD).

“LCRD will demonstrate all of the advantages of using laser systems and allow us to learn how to use them best operationally,” said Principal Investigator David Israel at NASA’s Goddard Space Flight Center in a statement “With this capability further proven, we can start to implement laser communications on more missions, making it a standardized way to send and receive data.”

To test out laser communications, LCRD will be launched into geosynchronous orbit around 22,000 miles above the planet in June. For the first two years of its mission, it will test out communications with various experiments involving sending data back and forth between the ground station in California and Hawaii. As laser communications can be blocked by clouds, NASA needs to figure out what the effects of various kinds of atmospheric disturbance will be on the communications system. After these two years are up, LCRD will start sending and receiving information to and from current space missions.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Here are the new spacesuits astronauts will wear for tonight’s Starliner launch
A graphic displaying Boeing’s spacesuit for Starliner astronauts.

A graphic displaying Boeing’s spacesuit for Starliner astronauts. NASA/Boeing

Two NASA astronauts are making final preparations directly ahead of the first crewed launch of the new Boeing Starliner capsule, which will launch from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida later tonight, Monday May 6. Butch Wilmore and Suni Williams will be aboard for liftoff at 10:34 p.m. ET (here's how to watch), when an Alliance Atlas V rocket launchesthe Starliner for its test flight to the International Space Station (ISS).

Read more
Check out SpaceX’s new spacesuit for first private spacewalk
spacex spacesuit first private spacewalk

The Extravehicular Activity (EVA) Suit

SpaceX has shown off the new spacesuit that will be worn for the first commercial astronaut spacewalk during the upcoming Polaris Dawn mission.

Read more
First crewed Starliner test needs good weather for launch. Here’s the forecast
Boeing Space's Starliner spacecraft.

Boeing’s CST-100 Starliner spacecraft Boeing / Boeing

NASA and Boeing Space are a short time away from conducting the first crewed launch of the CST-100 Starliner spacecraft from the Kennedy Space Center in Florida.

Read more