Skip to main content

NASA’s Psyche spacecraft sends back its first image of a star field

NASA has shared the first images taken by its Psyche mission, which launched in October to study a strange metal asteroid located in the main belt between Mars and Jupiter. The spacecraft, which is still on its long journey, is expected to make its arrival at the asteroid in 2029 and is currently between the orbits of Earth and Mars. But it is already testing out its instruments by taking a test image using its two cameras and sending it back to Earth, in a process called first light.

The image captured by Psyche’s cameras shows a field of stars in the constellation Pisces. It is a mosaic made from the total of 68 images taken by the two cameras, with its first camera Imager A taking images for the left side and its second camera imager B taking images for the right side.

This mosaic was made from “first light” images acquired by both of the cameras on NASA’s Psyche spacecraft on Dec. 4, 2023. The field of view of this mosaic is about 8 degrees wide by 3.5 degrees tall. The images were acquired using the camera’s clear or “broadband” filter and an exposure time of six seconds. Imager A took the left half of the mosaic; Imager B took the right half.
This mosaic was made from “first light” images acquired by both of the cameras on NASA’s Psyche spacecraft on December 4, 2023.  NASA/JPL-Caltech/ASU

This region wasn’t chosen for any particular scientific interest, rather it was a test of the cameras when they happened to be pointing in this particular direction. There aren’t many bright stars in this area, but there are still many that are identifiable and have been labeled on the annotated version of the image below:

Annotated version of Psyche's first light image, with stars labeled.
Annotated version of Psyche’s first light image, with stars labeled. NASA/JPL-Caltech/ASU

“These initial images are only a curtain opener,” said Psyche imager instrument lead Jim Bell of Arizona State University in a statement. “For the team that designed and operates this sophisticated instrument, first light is a thrill. We start checking out the cameras with star images like these, then in 2026, we’ll take test images of Mars during the spacecraft’s flyby. And finally, in 2029 we’ll get our most exciting images yet – of our target asteroid Psyche. We look forward to sharing all of these visuals with the public.”

The Psyche mission has already made another milestone in its journey, as it recently tried out a laser communications test called Deep Space Optical Communications, or DSOC. The DSOC experiment is riding along with Psyche to test out whether laser communications can be used on deep space missions, as it has the potential to provide bandwidths up to 100 times greater than the radio frequency communication systems that are currently used.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Starliner spacecraft just took a major step toward first crewed flight
Boeing's Starliner spacecraft being stacked on the Atlas V rocket.

A crane lifts the Starliner spacecraft to the top of an Atlas V rocket. Boeing Space

Boeing’s CST-100 Starliner spacecraft has been stacked atop the United Launch Alliance (ULA) Atlas V rocket ahead of its first crewed flight next month.

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more