Skip to main content

Upcoming Roman Space Telescope could discover 100,000 new exoplanets

Illustration of a planet transiting its host star.
Illustration of a planet transiting its host star. NASA's Jet Propulsion Laboratory

In the last decade, telescopes have discovered thousands of planets outside our solar system, called exoplanets, giving us a tantalizing glimpse into possible worlds beyond our own. But the next generation of telescopes will be able to discover even more, like the upcoming NASA Nancy Grace Roman Space Telescope which could discover tens of thousands of exoplanets.

To find new planet candidates, Roman will use a method called microlensing. This works by looking at a large number of stars and watching for a time when one star passes in front of another from our perspective on Earth. When this happens, the gravity of the foreground star bends the light being given off by the background star, resulting in a small fluctuation in brightness. This allows scientists to learn about the foreground star, including whether it might host planets.

The challenge with this method is that it is extremely rare for two stars to line up just so. In order to find two stars lining up, the telescope has to observe millions of stars to increase the chances of seeing one pass in front of another.

“Microlensing events are rare and occur quickly, so you need to look at a lot of stars repeatedly and precisely measure brightness changes to detect them,”  astrophysicist Benjamin Montet, a Scientia Lecturer at the University of New South Wales in Sydney, said in a statement.

This is handy in several ways, as such observations also enable a different type of exoplanet detection using the transit method. “Those are exactly the same things you need to do to find transiting planets, so by creating a robust microlensing survey, Roman will produce a nice transit survey as well,” Montet said.

The transit method looks for dips in the brightness of stars caused when a planet passes between the star and us. This provides an additional method for discovering even more exoplanets from the same data. This method is best for finding planets close to their stars, while microlensing is best for finding planets far from their stars.

“The fact that we’ll be able to detect thousands of transiting planets just by looking at microlensing data that’s already been taken is exciting,” said study co-author Jennifer Yee, an astrophysicist at the Center for Astrophysics, Harvard & Smithsonian in Cambridge, Massachusetts. “It’s free science.”

A research paper from Montet estimated that using microlensing, Roman could detect as many as 100,000 planets, and it may discover even more using the transit method as well. The telescope is scheduled to launch in the mid-2020s.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers discover extremely hot exoplanet with ‘lava hemisphere’
Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old. It's also the closest discovered Earth-sized planet this young, at about 400 million years old.

Astronomers have discovered an Earth-sized exoplanet with an unusually extreme climate where one half of the planet is thought to be covered in lava. The planet HD 63433 d is tidally locked, meaning one side of it always faces its star while the other half always faces out into space, creating a huge difference in temperatures between the planet's two faces.

Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old.  NASA/Ames/JPL-Caltech/T. Pyle

Read more
How astronomers used James Webb to detect methane in the atmosphere of an exoplanet
An artists rendering of a blue and white exoplanet known as WASP-80 b, set on a star-studded black background. Alternating horizontal layers of cloudy white, grey and blue cover the planets surface. To the right of the planet, a rendering of the chemical methane is depicted with four hydrogen atoms bonded to a central carbon atom, representing methane within the exoplanet's atmosphere. An artist’s rendering of the warm exoplanet WASP-80 b whose color may appear bluish to human eyes due to the lack of high-altitude clouds and the presence of atmospheric methane identified by NASA’s James Webb Space Telescope, similar to the planets Uranus and Neptune in our own solar system.

One of the amazing abilities of the James Webb Space Telescope is not just detecting the presence of far-off planets, but also being able to peer into their atmospheres to see what they are composed of. With previous telescopes, this was extremely difficult to do because they lacked the powerful instruments needed for this kind of analysis, but scientists using Webb recently announced they had made a rare detection of methane in an exoplanet atmosphere.

Scientists studied the planet WASP-80 b using Webb's NIRCam instrument, which is best known as a camera but also has a slitless spectroscopy mode which allows it to split incoming light into different wavelengths. By looking at which wavelengths are missing because they have been absorbed by the target, researchers can tell what an object -- in this case, a planetary atmosphere -- is composed of.

Read more
James Webb investigates a super puffy exoplanet where it rains sand
Artistic concept of the exoplanet WASP-107b and its parent star. Even though the rather cool host star emits a relatively small fraction of high-energy photons, they can reach deep into the planet’s fluffy atmosphere.

Exoplanets come in many forms, from dense, rocky planets like Earth and Mars to gas giants like Jupiter and Saturn. But some planets discovered outside our solar system are even less dense than gas giants and are a type known informally as super-puff or cotton candy planets. One of the least dense exoplanets known, WASP-107b, was recently investigated using the James Webb Space Telescope (JWST) and the planet's weather seems to be as strange as its puffiness.

The planet is more atmosphere than core, with a fluffy atmosphere in which Webb spotted water vapor and sulfur dioxide. Strangest of all, Webb also saw silicate sand clouds, suggesting that it would rain sand between the upper and lower layers of the atmosphere. The planet is almost as big as Jupiter but has a tiny mass similar to that of Neptune.

Read more