Skip to main content

The ‘Phantom Galaxy’ looks stunning in this Webb telescope image

The James Webb Space Telescope is continuing to deliver astonishing images of deep space, with this latest one revealing the incredible beauty of M74, otherwise known as the Phantom Galaxy.

The Phantom Galaxy captured by the James Webb Space Telescope.
ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

The Phantom Galaxy has been captured before by the Hubble Space Telescope, but Webb’s more powerful infrared technology reveals for the first time its “delicate filaments of gas and dust in the grandiose spiral arms which wind outwards,” as per the European Space Agency (ESA), which is overseeing the Webb mission with NASA and the Canadian Space Agency (CSA).

The Phantom Galaxy is around 32 million light years from our planet and according to ESA is “a type of spiral galaxy classified as a ‘grand design spiral’, meaning that its spiral arms are prominent and well-defined, unlike the patchy and ragged structure seen in some spiral galaxies.”

The galaxy is situated almost face-on to Earth, a characteristic that offers observers an excellent view and therefore makes it a favorite for astronomers who are keen on learning more about the origin and structure of galactic spirals.

Webb’s current work is part of a bigger project to map 19 nearby star-forming galaxies in the infrared, with Webb’s technology enabling astronomers to discover the precise location of star-forming regions within these galaxies. ESA says Webb can also help astronomers to gauge the masses and ages of star clusters, and learn more about the nature of the small grains of dust that drift about in interstellar space.

The James Webb Space Telescope launched from the Kennedy Space Center in Florida at the end of last year. Positioned in an orbit about a million miles from Earth, the most powerful space telescope ever built has been beaming back dazzling images since mid-July, including this one showing Jupiter as you’ve never seen it before.

But the mission is about a lot more than capturing images of gorgeous space scenery, as scientists hope that data from Webb will help them to learn more about the origins of the universe, and even discover planets like our own that could support life.

Editors' Recommendations

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
See planets being born in new images from the Very Large Telescope
This composite image shows the MWC 758 planet-forming disc, located about 500 light-years away in the Taurus region, as seen with two different facilities. The yellow colour represents infrared observations obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope (VLT). The blue regions on the other hand correspond to observations performed with the Atacama Large Millimeter/submillimeter Array (ALMA).

Astronomers have used the Very Large Telescope to peer into the disks of matter from which exoplanets form, looking at more than 80 young stars to see which may have planets forming around them. This is the largest study to date on these planet-forming disks, which are often found within the same huge clouds of dust and gas that stars form within.

A total of 86 young stars were studied in three regions known to host star formation: Taurus and Chamaeleon I, each located around 600 light-years away, and Orion, a famous stellar nursery located around 1,600 light-years away. The researchers took images of the disks around the stars, looking at their structures for clues about how different types of planets can form.

Read more
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more